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1 Introduction

This paper carefully guides the reader through the steps of a formal specification and verification

of the requirements for a simple system--an airline reservation system. This paper is intended for

the novice and is tutorial in nature. The goal is to explore a few important techniques and concepts

by way of example rather than to discuss interesting research issues.

This tutorial is intended to be used while one is sitting at a computer terminal. Therefore,

general discussions are limited to a few introductory comments. However, the commentary about

the example problem is extensive. The reader is referred to [1] for a detailed discussion about

contemporary issues in formal methods research.

This tutorial presents the techniques of formal specification and verification in the context

of the Prototype Verification System (PVS) developed by SRI International [2]. No specialized

knowledge of logic or computer science is assumed, though it is necessary for the reader to have

the PVS documentation [3, 4, 5] in order to effectively use this tutorial. The tutorial also assumes
that the reader is familiar with Emacs, the text editor the serves as a front-end to the PVS system.

1.1 Some Preliminary Concepts

The requirements specification or high-level design of many systems can be modeled as a state

machine. This involves the introduction of an abstract representation of system state and a set of

operations that operate on the system state. These operations transition a system from one state

to another in response to external inputs.

The development of a state machine representation of the system requires the development

of a suitable collection of type definitions with which to build the state description. Additional

types, constants, and functions are introduced as needed to support subsequent formalization of the

operations. Operations on the state are defined as functions that take the system from one state to

another or, more generally, as mathematical relations. Many times an invariant to the system state

is provided to formallze the notion of a "well-defined" system state. The invariant is shown to hold

in the presence of an arbitrary operation on the state assuming that the invariant holds before the

operation begins. Other desired properties may be expressed as predicates over the system state

and operations, and can be proved as putative theorems that follow from the formalization.

1.2 Statement of The Example Problem

In the next sections we will demonstrate some of the techniques of formal specification and verifica-

tion by way of an example--an automated airline seat assignment system that meets the following

informal requirements:

1. The system shall make seat assignments for passengers on scheduled airline flights.

2. The system shall maintain a database of seat assignments.

3. The system shall support a fleet having different aircraft types.

4. Passengers shall be allowed to specify preferences for seat type (e.g., window or aisle).

5. The system shall provide the following operations or transactions:

• Make a new seat assignment

• Cancel an existing seat assignment



ThisexampleproblemwasderivedfromanEhdmspecificationpresentedby BenDi Vito at the
SecondNASAFormalMethodsWorkshop[6].

2 Formal Specification Of the Reservation System

This section provides a step-by-step elaboration of the process one goes through in developing a

formal specification of the example system. Much of the typing required to carry out this exer-

cise can be reduced by retrieving the specifications from airl6.1arc.nasa.gov using anonymous

FTP. The specifications are located in the directory pub/fm/larc/PVS-_utorial in a file named

plane-reservation-sys, dmp.

2.1 Creating Basic TYPE Definitions

We begin our formal specification by creating some names for the objects that our formal speci-

fication will be describing. We obviously will be talking about seats in an airplane and will need

a way to identify a particular seat. We decide to represent an airplane's seating structure as a

two-dimensional array of "rows" and "positions". In PVS one writes

row: TYPE

position: TYPE

to define the two domains of values. Of course this specification says nothing about what kind of

value "row" or "position" could be. We decide to number our rows and positions with positive

natural numbers. This is illustrated in figure 1. Of course we really don't need an infinite set of
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Figure 1: Model of Seating Arrangement In An Airplane

numbers since we know the l_gest airplane in our fleet, and thus we assume the existence of two

constants that delineate the maximum number of rows in any airplane and the maximum number

of positions for any row:

nrows: posnat % Max number of rows

nposits: posnat _ Max number of positions per row
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We now modify our specification of "row" and "position":

row: TYPE = {n: posnat i I <= n AND n <= nrows}

position: TYPE ,, {n: posnat I I <= n AND n <= nposits}

This defines row and position as subranges of the positive naturals (called posnat in PVS). The

notation is very simple. The text before the ] defines the parent type and the text after the I gives

a predicate that defines the particular subset of the parent type that you are interested in. Thus,

row is any positive natural number between 1 and nrows inclusive.

2.2 Creating a PVS Specification File

We now put these together in a file. We start up PVS and type _l-x nf. PVS asks for a name for

the new file. We answer "basic_defs.pvs". PVS creates the following file:

basic_defs _ [ parameters ]

: THEORY

BEGIN

ASSUMING

X assuming declarations

X ENDASSUMING

END basic_defs

We remove all ofthe text after the % characters, and then add our type definitions1:

basic_defs: THEORY

BEGIN

nrows: posnat X Max number of rows

nposits: posnat _ Max number of positions per row

row: TYPE ffi{n: posnat I 1 <= n AND n <ffinrows}

position: TYPE - {n: posnat I I <= n AND n <ffinposits}

END basic_defs

We now issue the PVS typecheck command, M-x ¢c. PVS responds "basic_defs typechecked

in 0 seconds. No TCCS generated".

We now need to define some other types that define the flight number, _rcrafttype, a position

pre_rence (e.g. _sle or window) and an identifier for passengers:

flight: TYPE X Flight identifier

plane: TYPE _ Aircraft type

preference: TYPE _ Position preference

passenger: TYPE _ Passenger identifier

We add this text to our fi_ and typecheck ag_n.

1The only rem£ning _ywords de THEORY,which delineates the st_t of a new module, and the BEGIN END
keywotds, which surround the body _ the speidfication.



2.3 Definition of the Reservation System Database

We are ready to define the database that will maintain all of the reservations. For each flight, the

system must maintain a set of seat assignments. We decide to represent each seat assignment as a

record that contains a passenger and his assigned seat. This can be formally represented in PVS

using the record constructor:

seat_assignment: TYPE = [# seat: [row, position],

pass: passenger #]

The seat field of the record is of type [row, position], an ordered pair (or 2-tuple) of row

and position. The entire set of seat assignments for a flight can be represented using PVS's set

constructor, set.

flight_assignments: TYPE - set [seat_assignment]

This defines a set type that contains only elements of type seat_assignment and assigns it the

name flight_assignments. Sets are defined in the PVS prelude, which can be displayed using the

M-x vpf command. The sets module provides definitions for the basic set operations. Some of
these operations are described in table 1.

operation

member

union

intersection

difference

add

singleton
subset?

emptyset

traditional notation or meaning

E
U
n

\
add element to a set

constructs set with 1 element

C

0

Table 1: A partial list of PVS set operations

The complete flight-reservation database can now be modeled as a mapping from flight identifier

into that flight's current set of seat assignments:

assn_state: TYPE = function[flight -> flight_assignments]

Initially, each flight has no assignments:

fit: VAR flight

initial_state: function[flight-> flight_assignments] =

(LAMBDA fit : emptyset [seat_assignment])

We add this to our specification and typecheck it.

2.4 Aircraft Seat Layout

Since there is a maximum number of rows and seats per row, we must indicate whether a (row,
position) pair exists for a given aircraft type. This can be accomplished through use of several

functions that are uniquely defined for different plane types:
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seat_exists: function[plane, [row, position] -> bool]

meets_pref: function[plane, [to., position], preference -> bool]

Since we do not want to restrict our specification to any particular plane type, we do not supply

a definition (i.e., a function body) for these functions. They are left "uninterpreted." The in-

tended meaning of these functions are as follows. The function seat_exists is true only when the

indicated seat (i.e. [row,position] ) is physically present on the indicated airplane. The func-

tion meets_pref specifies whether the particular seat is consistent with the particular preference

indicated. The type of airplane assigned to a particular flight is given by the aircraft function:

aircraft : function[flight -> plane]

The description of the basic attributes of the system is now complete. The specification is:

basic_defs: THEORY

BEGIN

nrows: posnat

nposits: posnat

Max number of rows

Max number of positions per row

row: TYPE = {n: posnat I 1 <= n AND n <= nrows}

position: TYPE = {n: posnat I 1 <= n AND n <= nposits}

flight: TYPE

plane: TYPE

preference: TYPE

passenger: TYPE

Flight identifier

Aircraft type

Position preference

Passenger identifier

seat_assignment: TYPE = [# seat: [row, position],

pass: passenger #]

flight_assignments: TYPE = set[seat_assignment]

assn_state: TYPE = function[flight -> flight_assignments]

flt: VAR flight

initial_state: function[flight -> flight_assignments] -

(LAMBDA flt: emptyset[seat_assignmen%])

_ImB IIJ_Z_IZ _II_ I SmUlaS_mIBm I l_ mX |_| | |_|| | || |||| |||| ||||||||I||IIIII

Definitions that define attributes of a particular aiIplane

INZgUlJ mnmgII_lJg E i sII_ III_i Imm_mIIIIIiimmmmmIIIIIII

seat_exists: function[plane. [row. position] -> boo1]

meets_pref: function[plane, [ro., position], preference -> bool]

aircraft: function[flight -> plane]

END hasic_defs



2.5 Specifying Operations on the Database

Our method of formally specifying operations is based on the use of state transition functions. The

function defines the value of system state after invocation of the operation in terms of the system
state before the operation is invoked.

To produce a modular specification, we will place the operations in a new theory (i.e. a new
module). This is accomplished in PVS by using the M-x nE command. We issue this command

and name the new theory ops. All of the definitions of the basic_defs theory are made available
to this theory using the IMPORTING command:

ops: THEORY
BEGIN

IMPORTING basic_dsfs

END ops

2.6 Seat Assignment Operations

The first operation that we need is Cancsl_assn(flt,pas), which cancels the seat assignment for
a passenger, pas, on flight flE:

fie : VAR flighE

pas : VAR passenger

sl : VAR assn_sEate

a,b: VAR ssaE_assigr_menE

Cance1_assn: funcEion[flight, passenger, assn_staEe-> assn_sEats] =

(LAMBDA fiE, pas, sl:

sl WITH [(flt) := {a I member(a,sl(flE)) AND pass(a) /= pas}])

This specification uses the PVS WITH construct. The WITH expression is used to define a new

function that differs from another function for a few indicated values. For example, f WITH [(1) :=

y] is identical to f, except possibly for f(1) 2. Thus, all seat assignment sets for flights other than flt

are unchanged. For flight fiE, however, all assignments on behalf of passenger pas are removed

(there should be at most one). As discussed earlier (i.e. see table 1), the function member is defined
in the sets module of the PVS prelude.

The second operation is Make_assn(flE ,pas ,prsf), which makes a seat assignment, if possible,

for passenger pas on flight flE. There are two conditions that should prevent us from carrying out
this operation on the reservation database

1. when there is no seat available that meets the passenger's specified preference

2. when the passenger already has a seat on the plane

Condition (1) can be expressed in PVS as follows:

(FORALL seaE: meets_pref(aircraft(flt), seaE, pref)

IMPLIES (EXISTS a: member(a, as(fiE))

AND seat(a) ffiseat)))

2Thezesulting hnction _ not differentiff(1) = y.
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This states that all seats that meet the passenger's preference (meets_pref (aircraft (flt), seat,

pref) ) are already assigned to another passenger, i.e., there already exists a record a in the database

with the specified seat. Note that PVS departs from the traditional dot notation (e.g.a.seat)

and uses seat(a) to dereference the seat field of record a. We can supply a name, pref_filled

for this condition as follows:

as: VAR assn_state

pref: VAR preference

seat: VAR [row.position]

pref_filled: function[assn_state, flight, preference -> boo1] -

(LAMBDA as, flt, pref:

(FORALL seat: meets_pref(aircraft(flt), seat, pref)

IMPLIES (EXISTS a: member(a, as(flt)) AND seat(a) = seat)))

The first line gives the types of the arguments and result of the function. The key word LAMBDA

is just syntax that means "the following text up to the colon are the formal arguments for this

function. PVS also allows the following equivalent definition:

pref_filled(as, flt, prsf): boo1 =

(FORALL seat: meets_pref(aircraft(flt), seat, pref)

IMPLIES (EXISTS a: member(a, as(flt))

AND seat(a) = seat))

where the types of the function arguments are inferred from the variable declarations.

The second condition (i.e., the passenger already has a seat on the plane) can be defined as

follows:

pass_on_flight: function[passenger, flight, assn_state -> boo1] -

(LAMBDA pas, flt, sl: (EXISTS a:

pass(a) = pas AND member(a,sl(flt))))

We are now ready to define the operation that assigns a passenger to a particular flight,

Make_assn:

Make_assn: function[flight, passenger, preference.

-> assn_state] =

(LAMBDA flt, pas, pref, sl:

IF pref_filled(sl, flt, pref) OR

pass_on_flight(pas,flt,sl) THEN sl

ELSE

(LET a - (# seat

pass

sl WITH [(flt)

ENDIF)

assn_state

:- Next_seat(sl,flt,pref),

:= pas #) IN

:- add(a, s1(flt))])

In this specification, if either of the two anomalous conditions is true, the database is not changed.

The ELSE clause defines what happens otherwise. This clause uses PVS's LET construct. The

LET statement allows one to assign a name to a subexpression. This is especially useful when a

subexpression is used multiple times in an expression. In our case, the subexpression a only occurs

once--in the subexpression add(a, el(fit)), which creates a new set by adding the element a to



the setsl(flt). TheLETis usedhereto makethe completeexpressioneasierto read.The value
of the LETvariablea is definedusinga recordconstructor,i.e. (# ... #). In this case,thepass
field is setequalto theformalparameterpas,andthe seat fieldof therecordis updatedwith the
result from anotherfunction,Next_seat:

Next_seat: function[assn_state, flight, preference -> [row,position]]

This function selects the next seat to be given a passenger from all of the available seats. Any

number of algorithms can be imagined that would make this selection, e.g. the seat with the lowest

row and position number available. However, since this is a hlgh-level specification, we decide to

leave the particular selection algorithm unspecified. Thus, we do not define a body for this function

and leave it as an "uninterpreted" function. Nevertheless, we will need a general property about

this function in order for one of our proofs to go through 3. We define this property with an axiom:

Next_seat_ax: AXIOM NOT pref_filled(sl, flt, pref) IMPLIES

seat_exists(aircraft(flt),Next_seat(sl,flt,pref))

This axiom states that if a seat is available that matches the specified preference, then the function

Next_seat returns a [row, position] that actually exists on the airplane scheduled for flight flt.

Now that we have defined the operations, we are faced with the question, "How do we know that

the operations were specified correctly?" One approach to this problem is to construct "putative"

theorems. These are properties about the operations that should be true if we have defined them

properly. For example,

Make_Cancel: THEOREM NOT pass_on_flight(pas,flt,sl) =>

Cancel_assn(flt,pas,Maks_assn(flt,pas,pref,sl)) - sl

This states that if a particular passenger is not already assigned to a flight, then the result of

assigning that passenger to a flight and then canceling his reservation will return the database to

its original state 4. The process of attempting to prove such theorems can lead to the discovery of

errors in the specification. The proof of this theorem will be given in a later section. Some other

examples are:

Cancel_putative: THEOREM

NOT (EXISTS (a: seat_assignment):

member(a,Cancel_assn(flt,pas,sl)(flt)) AND pass(a) = pas)

Make_putative: THEOREM NOT pref_filled(sl, flt, pref) =>

(EXISTS (x: seat_assi_rnment) :

member(x, Make_assn(flt, pas, pref, sl)(flt)) AND pass(x) -pas)

2.7 Specifying Invariants On the State Of the Database

The system state is subject to three types of anomalies:

1. Assigning nonexistent seats to passengers

2. Assigning multiple seats to a single passenger

3The need for this property was not apparent until the proofs were in progress.
4We have used the alternate PVS syntax for logical implies: ->.
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3. Assigningmorethanonepassengerto a singleseat

Preventionof anomaly(1) canbe formalizedasfollows:

existence: function[assn_state -> bool] -

(LAMBDA as: (FORALL a,flt: member(a, as(flt)) IMPLIES

seat_exists(aircraft(fit), seat(a) ) ) )

Prevention of anomaly (2) can be formalized as follows:

uniqueness: function[assn_state -> boo1] =

(LAMBDA as: (FORALL a,b,flt:

member(a, as(flt)) AND member(b, as(fit))

AND pass(a) = pass(b) IMPLIES a = b))

Prevention of anomaly (3) can be formalized as follows:

one_per_seat : function[assn_state -> bool] =

(LAMBDA as: (FORALL a,b,flt: member(a, as(flt)) AND member(b, as(flt))

AND seat(a) = seat(b) IMPLIES a = b))

The overall state invariant is the conjunction of the three. However, in order to simplify the dis-

cussion we will work with the first two and leave the last invariant as an exercise s. The conjunction

of the first two can be captured in a single function as follows:

assn_invariant : function[assn_state -> bool] =

(LAMBDA as: existence(as) AND uniqueness(as))

2.8 PVS Typechecking and Typecheck Conditions (TCCs)

We combine the definitions for the operations and the invariants in a new theory called ops:

ops : THEORY

BEGIN

IMPORTING basic_defs

fit: VAR flight

pas: VAR passenger

as, sl: VAR assn_state

a,b,x: VAR seat_assignment

pref: VAR preference

seat: VAR [row,position]

Cancel_assn: function[flight, passenger, assn_state -> assn_state] -

(LAMBDA fit, pas, sl:

sl WITH [(fit) := {a ] member(a,s1(flt)) AND pass(a) /= pas}])

5It is the easiest of the three invariants.



pref_filled: function[assn_state, flight, preference -> bool] -

(LAMBDA as, flt, pref:

(FORALL seat: meets_pref(aircraft(flt), seat, pref)

IMPLIES (EXISTS a: member(a, as(flt))

AND seat(a) = seat)))

Next_seat: function[assn_state, flight, preference -> [row,position]]

Next_seat_ax: AXIOM NOT pref_filled(sl, flt, pref) IMPLIES

seat_exists(aircraft(flt),Next_seat(sl,flt,pref))

pass_on_flight: function[passenger, flight, assn_state -> bool] =

(LAMBDA pas, flt, sl: (EXISTS a:

pass(a) = pas AND member(a,sl(flt))))

Make_assn: function[flight, passenEer, preference,

-> assn_state] =

(LAMBDA flt, pas, pref, sl:

IF pref_filled(sl, flt, pref) OR

pass_on_flight(pas,flt,sl) THEN sl

ELSE

(LET a = (% seat := Next_seat(sl,flt,pref),

pass := pas #) IN

sl WITH [(flt) := add(a, sl(flt))])

ENDIF)

assn_state

Invariants

existence: function[assn_state -> bool] =

(LAMBDA as: (FORALL a,flt: member(a, as(flt)) IMPLIES

seat_exists(aircraft(flt), seat(a))))

uniqueness: function[assn_state -> bool] =

(LAMBDA as: (FORALL a,b,flt:

member(a, as(flt)) AND member(b, as(flt))

AND pass(a) = pass(b) IMPLIES a = b))

assn_invariant: function[assn_state -> bool] =

(LAMBDA as: existence(as) AND uniqueness(as))

Cancel_assn_inv: THEOREM assn_invariant(sl)

Implies assn_invariant(Cancel_assn(flt,pas.sl))

MAe: THEOREM existence(sl)

IMPLIES exlstence(Make_assn(flt,pas,pref,sl))

I0



MAu:THEOREMuniqueness(sl)
IMPLIES uniqueness(Make_assn(flt,pas,pref,sl))

Make_assn_inv: THEOREM assn_invariant(sl) ->

assn_invariant(Make_assn(flt,pas,pref,sl))

Make_Cancel: THEOREM NOT pass_on_flight(pas,flt,sl) ->

Cancel_assn(flt,pas,Make_assn(flt,pas,pref,sl)) " sl

END ops

When we issue the M-x tc command we notice that the system responds ops typechecked:

2 TCCs, 0 Proved, 0 subsumed, 2 unproved. Unlike many high-level programming languages,

PVS often requires theorem proving in order to guarantee that the specification is type correct.

This is the price one has to pay for the very powerful type structure of the language.

M-x show-cccs opens up a window that displays the typecheck obligations:

Existence TCC generated for row

Z unproved

Next_seat_TCCl: OBLIGATION (EXISTS (xl: posnat): i <= xl AND xl <- nrows)

Existence TCC generated for position

unproved

Next_seat_TCC2: OBLIGATION (EXISTS (xl: posnar): 1 <= xl AND xl <- nposits)

We position the cursor on the first obligation and type M-x pr. The PVS system responds by

opening up a proof buffer containing the following output:

Next_seat_TCCl :

I

{1} (EXISTS (xl: posnat): I <= xl AND xl <= nrows)

The system wants us to prove that there exists a positive naturM number between 1 and nro,s.

We suggest that number 1 is such a number using the INST command.

Rule? (inst 1 "i")

Instantiating the top quantifier in i with the terms:

1

this simplifies to:

Next_seat_TCC1 :

i

{1} 1 <- 1 AND 1 <- nrows

We then teU the theorem prover that we think we have a proof via the ASSERT command:

Rule? (assert)

Invokin E decision procedures,

Ii



Q.E.D.

Run time - 1.28 secs.

Real time = 25.15 secs.

NIL

The prover agrees and responds Q.E.D. The same two commands prove the other obligation as
well. The use of the theorem prover will be explored in more detail in the next section.

There is an alternative way to deal with these TCC obligations--through use of the PVS

CONTAININGclause. Both of these proofs only needed the existence of a member of the user-defined

subtype. The CONTAINING clause enables one to affirm such a member in the specification:

row: TYPE = {n: posnat [ 1 <= n AND n <= nrows} CONTAINING 1

position: TYPE = {n: posnat ] 1 <= n AND n <= nposits} CONTAINING 1

If row and position are defined in this manner, the generated TCCs are automatically proven
using the command M-x tcp.

3 Formal Verifications

In this section we will walk-through the mechanical verification of the invariant properties discussed
previously.

To establish that the state invariant is preserved by every operation, we must prove theorems
of the form:

I($1) D I(op_spec(S1))

where $1 is the state before the operation and I represents the state invariant. Note that op_spec(S1)
is the state of the system after the operation. For our example, the required theorems can be ex-
pressed as follows:

Cancel_assn_inv: THEOREM assn_invariant(sl)

Implies assn_invariant(Cancel_assn(flt,pas,sl))

Make_assn_inv: THEOREM assn_invariant(sl) =>

assn_invariant(Make_assn(flt,pas,pref,sl))

3.1 Proof that Cancel_assn Maintains the Invariant

Although it is almost always advisable to search for a proof before engaging the theorem prover,

the prover can be useful in the discovery of the proof. We shall use this approach on this example,

since the theorem is shallow and not hard to understand. This section is meant to guide the PVS

novice through his first non-trivial use of the theorem prover. The goal is to gain some familiarity

with the capabilities of the system so that further reading in the user manuals is more productive.

The proofs given in this tutorial are by no means the best way of proving these theorems. They

were performed with the goal of walking the user through a large number of the PVS commands.

The user begins a proof session by positioning the cursor on a proof and typing M-x pr. The
system responds with:

12



Cancel_assn_inv :

[

{1> (FORALL (flt: flight). (pas: passenger). (sl: assn_state) :

as sn_ invariant (s1) IMPLIES assn_ invar iant (Cancel_ assn (flt. pas. s 1)))

The user then issues commands that manipulate the formula using truth-preserving operations.

The goal, of course, is to simplify the formula to the point where the prover can identify the

formula as a tautology (i.e. and thus a theorem). The user input in this paper can be identified

by the rule? prompt. All of the inputs in this tutorial are only one line. Although PVS allows

commands to be entered in either lower or upper case, we will use upper-case letters exclusively to

enhance readability.

The first thing that one usually does when proving a formula containing quantifiers (i.e. FORALLS

or EXISTS) is to remove them. This is necessary because many of the PVS commands are only

effective when the quantifiers have been removed. There are two basic strategies for removing

quantifiers: skolemization and quantification. Some situations require skolemization and others

require quantification. In this case we need to skolemize formula [1] 6. In PVS this is accomplished

using the SKOLEM command:

Rule? (SKOLEM 1 ("Flt" "Pas" "Sl"))

For the top quantifier in *. we introduce Skolem constants: (Flt Pas SI)

this simplifies to:

Cancel_assn_inv :

I
{I} assn_invariant(Sl) IMPLIES assnlinvariant(Cancel_assn(Flt. Pas. SI))

The first parameter of the SKOLEM command (i.e., 1,) specifies which formula the command should

be applied to 7. Note that the list of skolem names are enclosed in parentheses as well as the

complete command itself.

Clearly, no progress can be made until the meaning of "assn.invariant" is exposed to the prover.

This is done through use of the EXPAND command, i.e. (EXPAND "assn_invariant"). The system

responds as follows:

Rule? (EXPAND "assn_invariant")

Expanding the definition of assn_invariant

this simplifies to:

Cancel_assn, inv :

I

{I} existence(Sl) AND uniqueness(S1)

IMPLIES existence(Cancel_assn(Flt. Pas. SI))

AND uniqueness(Cancel_assn(Flt. Pas. $1))

SThe basic idea of skolemization is that a formula like Yz : P(z) which asserts the validity of a predicate P for an
arbitrary value of z, is equivalent to P(a) where a is a previously unused constant.

7In this case there is only one available formula. Later we shall encounter sequents with several formulas.
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We then proceed to expand with definitions of existence, uniqueness and Cancel_assn:

Rule? (EXPAND "existence")

Expanding the definition of existence

this simplifies to:

Cancel_assn_inv :

I
{1} (FORALL (a: seat_assignment), (flZ: flight):

member(a, Sl(flt)) IMPLIES seat_exists(aircrafz(flt), seat(a)))

AND uniqueness(Sl)

IMPLIES

(FORALL (a: seat_assignment), (flZ: flight):

member(a, Cancel_assn(Flt, Pas, Sl)(flt))

IMPLIES seat_exists(aircraft(flt), seat(a)))

AND uniqueness(Cancel_assn(Flt, Pas, $1))

Rule? (EXPAND "uniqueness")

Expanding the definition of uniqueness

this simplifies to:

Cancel_assn_inv :

I
{1} (FORALL (a: seat_assignment), (fit: flight):

member(a, Sl(flt)) IMPLIES seaz_exists(aircraft(flt), seat(a)))

AND

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

member(a, Sl(flt)) AND member(b, Sl(flt)) AND pass(a) = pass(b)

IMPLIES a = b)

IMPLIES

(FORALL (a: seat_assignment), (flZ: flight): : :_

.... member(a, Cancei_assn=(Flz, Pas _,$1)(_i£))

IMPLIES seat_exists(aircraft(flt), seat(a)))

AND

(FORALL (a: seat_assisnment), (bi seat_assis_nt),_:(f_i flight):

member(a, Cancel_assn(Flt, Pas, S1)(flt))

AND member(b, Cancel_assn(Flt, Pas, S1)(flt))

AND pass(a) = pass(b)

IMPLIES a = b)

Rule? (EXPAND "Cancel_assn")

Expanding the definition of Cancel_assn

this simplifies to:

Cancel_assn_inv :

I
{1} (FORALL (a: seat_assignment), (flt: flight):

member(a, Sl(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))
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AND

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

member(a, Sl(flt)) AND member(b, Sl(flt)) AND pass(a) = pass(b)

IMPLIES a = b)

IMPLIES

(FORALL (a: seat_assiEnment), (flt: flight):

member(a,

$1

WITH [Flt :=

{a: seat_assiEnment l

member(a, St(FIt)) AND pass(a) /= Pas}J(flt))

IMPLIES seat_exists(aircraft(fit), seat(a)))

AND

(FORALL (a: seat_assiEnmenr), (b: seat_assignment), (flt: fliEht):

member(a,

$1

WITH [Flt :=

{a: seat_assignment I

member(a, St(FIt)) AND pass(a) /= Pas}](flt))

AND

member(b,

$I

WITH [Flt :=

{a: seat_assignment I

member(a, SI(FIt)) AND pass(a) /- Pas}](flt))

AND pass(a) - pass(b)

IMPLIES a = b)

We note that the function member appears in sever_ places in the formula. Although thisfunction

is defined in the PVS prelude s, it must stiU be expanded in order for PVS to know what it means:

Rule? (EXPAND "member")

Expanding the definition of member

this simplifies to:

Cancel_assn_inv :

I

_1_. (FORALL (a: seat_assignment), (flt: fliEht):

Sl(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))

AND

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a - b)

IMPLIES

(FORALL (a: seat_assignment), (flt: flight):

$I

WITH [Fit :i

{a: seat_assi&q, ment I S1(Flt)(a) AND pass(a) /i Pas}](flt)(a)

SCan beinspectedbytyping M-xvpf.
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IMPLIES seat_exists(aircraft(flt), seat(a)))

AND

(FORALL (a: seat_assigrunent), (b: seat_assignment), (fl%: flight):

$1

WITH [FIt :=

{a: seat_assigrunent I Sl(Flt)(a) AND pass(a) /= Pas}](flt)(a)

AND

$I

WITH [Fit :=

{a: seat_assignment l

Sl(Flt)(a) AND pass(a) /= Pas}](flt)(b)

AND pass(a) = pass(b)

IMPLIES a = b)

Notice that member(a,Sl(flt)) has been changed to Sl(flt)(a). This looks funny at first, hut

it is correct. In PVS, sets are represented as functions that map from the domain type of the set

into boolean. This boolean-valued function is true only for members of the set, i.e. S(x) is true if

and only if x E S.

We are now ready to issue a useful command that breaks up formulas in a sequent into smaller

more tractable pieces: FLATTEN:

Rule? (FLATTEN)

Applying disjunctive simplification to flatten sequent,

this simplifies %o:

Cancel_assn_inv :

4-13"

4-2}

.......".........S{ (fi%) (1) AND Sl(fit)(b) AND pass(a) = pasS(5) IMPLIES a --_b)

I

41} (FORALL (a: seat_assignment), (fit : flight) :

S1

WITH [FIt :-

{ai seat_assignment I Sl(Flt)(a) AND pass(a) /= Pas}j(flt)(a)

IMPLIES seat_exists(aircraft(flt), seat(a)))

AND

(FDRALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

WITH [Flt :=

4a: seat_assi&_unent i SI(FIt) (a) AND pass(a) /= Pas}](flt)(a)

AND

S1

WITH [Flt :-=

{a: seat_assi&mment I SI(FIt)(a) AND pass(a)

AND pass(a) = pass(b)

IMPLIES a --b)

This is a probably a good place to discuss in more detail the nature of a "sequent". The system

(FORALL (a: seat_assignment), (fit: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(fit), seat(a)))

(FORALL (a: seat_assignment), (b: seat_assignment), (fl%: flight): : =_

/= Pas}] (flt) (b)

16



has broken the formula into three separate formulas labeled "{-1}, {-2}" and "{1}" separated by

a horizontal line. The basic idea is that all of the formulas labeled with positive numbers logically

follow from the formulas labeled with negative numbers. More precisely, the conjunction of the

antecedent (i.e. negative) formulas logically implies the disjunction of the consequent (i.e. positive)

formulas. In this instance we have:

(-1} A {-2} ==> {1}

We now notice that formula {1} is the conjunction (i.e. AND) of two formulas. In order for the

formula to be true, each of these must separately be true. To reduce the amount of text that we

have to think about at one time, it is helpful to break the proof into two separate steps. The PVS

system lets us do this with the SPLIT command.

Rule? (SPLIT 1)

Splitting conjunctions,

this yields 2 subgoals:

Cancel_assn_inv.l :

[-1]

C-2]

I
<1)

(FORALL (a: seat_assignment), (flt: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(fit), seat(a)))

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

(FORALL (a: seat_assignment), (flt: flight):

$1

WITH [Flt :=

{a: seat_assignment I Sl(Flt)(a) AND pass(a) /= Pas}](flt)(a)

IMPLIES seat_exists(aircraft(flt), seat(a)))

Notice that PVS responds with "Splitting conjunctions, this yields 2 subgoals:. We now

have two sequents to prove. These are named Cancel_assn_inv. I and Cancel_assn_Inv.2. The

system automatically keeps track of what has been proved and what is stillunfinished. After we

finishproving Cancol_assn_inv. 1 the system will require us to prove Cancel_assn_Inv. 29.

Things are starting to look a bit more tractable. Since we stillhave universal quantifiersin

formula {1}, we decide to skolemize it.This time we willuse the SKOLEM! command. This tellsthe

theorem prover to use any names that itlikes.

Rule? (SKOLEM! I)

For the top quantifier in 1, we introduce Skolem constants:

this simplifies to:

Cancel_assn_inv.1 :

(a!l flt!l)

[-1"1

[-23

I

(FORALL (a: seat_assignment), (flt: flight):

S1(flt)(a) IMPLIES seat_exists(alrcra_t(flt), seat(a)))

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND S1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

°Only one ofthe subgoaJsisdisplayedby the system at a time. The PVS command POSTP01E can be used to

switchtoanothersubgoal.
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{I} sl

WITH [F!t :-

{a : seat_assigTunent I Sl (Flt) (a) AND pass (a) /= Pas}] (flt !I)(a! 1)

IMPLIES seat_exists (aircraft (flt !1), seat (a !1))

As we can see, the prover chose names a! 1 and flt!l. This is not our first choice in names, but

at least this approach saved some typing. It also has the advantage that the name of the original

quantified variable is easily retrieved from the skolem name.

We notice that formula [-1] almost implies formula {1} (that is, after substituting a! 1 and

flt!l for the universal (i.e. FDRALL) variables). The only difference is that in formula {1} the

function S1 is slightly modified--the value of Sl(Flt) has been changed. We would like to deal

with this case separately. This is accomplished by using the CASE command:

Rule? (CASE "Flt = flt!l")

Case splitting on

Flt = flt!l,

this yields 2 subgoals:

Cancel_assn_inv. i.1 :

{-I}

[-2]

1"-3]

I

[i] Sl

Flt= flt!l

(FORALL (a; seat_assignment), (flt: Slight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(fit), seat(a)))

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

WITH [Flt :,,

{a: seat_assignment I SI(FIt) (a) AND pass(a) /= Pas}] (flt! i) (a! 1)

IMPLIES seat_exists (aircraft (flt !I), seat (a !I))

PVS responds with Case splitting on Fit = flt!l, this yields 2 subgoals. In one of the

subgoals, Fit = flt!l is put on the antecedent listand NOT Flt= flt!l is put on the other

list.PVS will actually move the NOT formula to the consequent side and remove the NOT. This is

logicallyequivalent. We now have three sequents to deal with. However, each of these are simpler

to prove than the original one.

We now issue the ASSERT command. This command invokes the PVS decision procedures to

analyze the sequent. When there are no quantifiers left around and the formulas have been reduced

to the point where simple propositional reasoning is adequate, ASSERT will automatically finish off

the proof. In this case, we still have quantifiers on the antecedent side of the sequent, and ASSERT

does not finish the job. Nevertheless, ASSERT does simplify the sequent for us:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:

Cancel_assn_inv. 1.1 :

[-1]

[-2]

Fit " flt!l

(FORALL (a: seat_assignment), (flt: flight):

S1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))
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[-3]

I
{I}

(FORALL (a: seat_assignment), (b: seat_assi&n%ment), (flt: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

Sl(Flt)(a!l) AND pass(a!1) /= Pas

IMPLIES seat_exisZs(aircraft(flt!1), seat(a!1))

Notice that the WITH structure has been coUapsed in formula [1]. As we noticed before, formula

[-2] impUes formula {1}, but it contains universally quantified (i.e. FORALL) variables that must be

instantiated before the PVS decision procedures can effectively work with it. Thus we substitute

a) 1 and flz ! 1 for the universal variables in [-2] . This is done in PVS using the INST command:

Rule? (INST -2 "a!l" "FIt")

Instantiating the top quantifier in -2 with the terms:

(a!l Flt)

this simplifies to:

Cancel_assn_inv.l.1 :

[-1]

{-2}

[-3]

I

[1]

Flt " flt!l

Sl(Flt)(a!l) IMPLIES seat_exists(aircraft(Fit), seat(a!1))

(FORALL (a: seat_assignment), (b: seat_assignment), (fit: flight):

Sl(flZ)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

Sl(FlZ)(a!l) AND pass(a!l) /= Pas

IMPLIES seat_exists(aircrafZ(flt!l), seat(a!l))

Formula [1] directly follows _om [-1] and [-2], but we remember that PVS's decision procedures
ohen need formulasthat contin an IMPLIES to be flattened. So we issue a FLATTEN command:

Rule? (FLATTEN) "

Applying disjunctive simplification to flatten sequent,

this simplifies to:

Cancel_assn_inv.l.l :

Now

[-1]

{-2}

[-3]

[-4]

I
{1}

{2}

Flt= flt!l

Sl(Flt)(a!l)

SI(Flt)(a!I) IMPLIES seat_exists(aircraft(Fit), seat(a!1))

(FORALL (a: seat_assignment), (b: seat_assignment), (flZ: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a - b)

pass(all) = Pas

seat_exists(aircraft(fit!l), seat(a!l))

we issue the ASSERT command:

Rule? (ASSERT)

Invoking decision procedures,

thls simplifies to:

Cancel_assn_inv.1.1 :

[-I] Flt - flt!l
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[-2]

[-3]
S1(Flt)(a!1)

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND S1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

i

[I] pass(a!l) = Pas

[2] seat_exists(aircraft(flt!l), seat(a!l))

{3} TRUE

which is trivially true.

This completes the proof of Cancel_assn_inv.1.1.

Cancel_assn_inv.l.2 :

[-1]

[-2]

I

{1}
[2]

(FORALL (a:

s1(flt)(a)

(FORALL (a:

Sl(flt)(a)

seat_assignment), (fit: flight):

IMPLIES seat_exists(aircraft(flt), seat(a)))

seat_assignment), (b: seat_assignment), (flt: flight):

AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a _ b)

Flt= flt!l

SI

WITH [Flt :=

{a: seat_assignment I Sl(Flt)(a) AND pass(a) /= Pas}](flt!1)(a!1)

== :=.... IMPLIES seat_exists(aircraft(flt!l), seat(a!1))

PVS responds that Cancel_assnJnv.l.1 is trivially true and informs us that "this completes

the proof of Cancel_assn_inv. I.i." However, our joy is shortlived because PVS quickly re-

minds us about Cancel_assn_inv. i.2. We are optimistic and try ASSERT:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:

Cancel_assn_inv.l.2 :

[-13

[-2]

I
[1]
{2}

(FORALL (a: seat_assignment), (flt: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a))> -_

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(f!t)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a m b)

Flt= flt!l

Sl(flt!l)(a!l) IMPLIES seat_exists(aircraft(flt!l), seat(a!1))

Well, it was worth a try. The ASSERT command at least simplified formula {2} considerably.

We remember that the PVS decision procedures do not like universal quantifiers and proceed to

eliminate them with a INST command:

Rule? (INST -i "a!l" "flt!l")

Instantiating the top quantifier in -i with the terms:

(a!l flt!l)
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this simplifies to:

Cancel_assn_inv. 1.2 :

I

[13

[23

S1(flt!l)(a!l) IMPLIES seat_exists(aircraft(flt!1), sear(a!1))

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

S1(flt)(a) AND S1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

Flt= flt!l

Sl(flt!l)(a!l) IMPLIES seat_exists(aircraft(flt!l), seat(a!1))

which is trivially true.

This completes the proof of Cancel_assn_inv.1.2.

This completes the proof of Cancel_assn_inv.l.

Cancel_assn_inv.2 :

[-i]

[-2]

I

{1}

(FORALL (a: seat_assignment), (fit: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(fit), seat(a)))

(FORALL (a: seat_assignment), (b: seat_assignment), (fit: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a - b)

(FORALL (a: seat_assignment), (b: seat_assiEnment), (fit: flight):

$1

WITH [Flt :=

{a: seat_assignment I Sl(Flt)(a) AND pass(a) /= Pas}](flt)(a)

AND

SI

WITH [Flt :=

{a: seat_assignment I Sl(Flt)(a) AND pass(a) /= Pas}](flt)(b)

AND pass(a) = pass(b)

IMPLIES a = b)

PVS issatisfiedthat Cancel_assn_inv. 1.2 istrue and supplies us with Cancel_assn_inv. 2 which

is left from our earlier SPLIT command. As usual we begin by removing the quantifiers with a

SKOLEM command:

Rule? (SKOLEM 1 ("AA" "B" "Flt2"))

For the top quantifier in i, we introduce Skolem constants: (AA B Flt2)

this simplifies to:

Cancel_assn_inv. 2 :

[-I]

[-2]

(FORALL (a: seat_assignment), (fit: flight):

S1(flt)(a) IMPLIES seaLexists(aircraft(flt), seat(a)))

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: fliEht):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)
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I
{I} $1

WITH [FIt :=

{a: seat_assignment l Sl(Flt)(a) AND pass(a) /= Pas}](FIt2)(AA)

AND

Sl

WITH [Flt :=

{a: seat_assignment I S1(Flt)(a) AND pass(a) /= Pas}](Flt2)(B)

AND pass(AA) = pass(B)

IMPLIES AA = B

We can see that formula {1} is closely related to [-2] but is complicated because of the function

modifications (i.e the WITH clauses). So we decide to use the same strategy as before, case split on
FIt = Flt2:

Rule? (CASE "Flt= Flt2")

Case splitting on

Flt= FIt2,

this yields 2 subgoals:

Cancel_assn_inv.2.1 :

{-I} FIt = Flt2

[-2] (FORALL (a:

Sl(flZ)(a)

[-3]

I
[I]

IMPLIES seat_exists(aircraft(fit), seat(a)))

(FORALL (a: seat_assignment) , (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

S1

WITH [FIt :=

{a: seat_assignment l SI(FIt)(a) AND pass(a) /= Pas}](Flt2)(AA)

AND

Sl

WITH [Flt :=

{a: seat_assignment l SI(FIt)<a)AND pass(a) /= Pas}](Flt2)(B)

AND pass(AA) = pass(B)

IMPLIES AA = B

We have two subgoAs Cancel_assn_inv.2.1 and Cancel_assn_inv.2.2. The system directs our

attention to the . 1 formula. We issue an ASSERT command to collapse the WITH clauses in the

presence of formula {-1}:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:

Cancel_assn_inv.2.1 :

[-1]
[-2]

Flt I Flt2

(FORALL (a: seat_assignment), (flt: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(fit), seat(a)))
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[-3]

I

{i}

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a - b)

(SI(FIt)(AA) AND pass(AA) /= Pas)

AND (SI(FIt)(B) AND pass(B) /= Pas) AND pass(AA) = pass(B)

IMPLIES AA = B

We need to get rid of the FORALL quantifier in formula [-3]. First, we must decide whether a

skolemization or quantification is required. Here is the basic rule: FORALL quantifiers in formulas

on the antecedent side and EXISTS quantifiers on the consequent side must be instantiated using

INST (or the equivalent command (QUANT). EXISTS quantifiers in formulas on the antecedent side

and FORALL quantifiers on the consequent side must be skolemized 1°. Thus, we need to use a INST

command:

Rule? (INST -3 "AA" "B" "Fit")

Instantiating the top quantifier in -3 with the terms:

(AA B Flt)

this simplifies to:

Cancel_assn_inv.2.1 :

{-3}

I

[1]

Flt = Flt2

(FORALL (a: seat_assignment), (flt: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))

SI(FIt)(AA) AND SI(FIt)(B) AND pass(AA) = pass(B) IMPLIES AA - B

(SI(FIt)(AA) AND pass(AA) /= Pas)

AND (SI(FIt)(B) AND pass(B) l= Pas) AND pass(AA) m pass(B)

IMPLIES AA = B

We notice that there are several ANDs in the formula so we decide to flatten it before we ASSERT:

Rule? (FLATTEN)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

Cancel_assn_inv.2.1 :

[-1]

{-2}
{-3}

{-4}

I-s]

[-6]

I

{1}
{2}

{3}

Flt = Flt2

SI(Flt)(AA)

SI(Flt)(B)

pass(AA) = pass(B)

(FORALL (a: seat_assi&nament), (flt: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))

SI(FIt)(AA) AND SI(FIt)(B) AND pass(AA) = pass(B) IMPLIES AA = B

pass(AA) - Pas

pass(B) = Pas

AA = B

1°If you guess wrong the theorem prover will promptly inform you.
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We can see that {-2}, {-3} and {-4} will discharge the premise of [-6] yielding AA = B. This is

identical to one of the consequent formulas, i.e.,{3}, so we should be done. We therefore issue an
ASSERT command:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:

Cancel_assn_inv.2.1 :

[-1]

[-2]

[-3]
[-4]
I-s]

Flt= Flt2

SI(Flt)(AA)

SI(FIt)(B)

pass(AA) : pass(B)

(FORALL (a: seat_assignment), (flt: flight):

Sl(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))

I

[i] pass(AA) : Pas

[2] pass(B) = Pas

[3] AA = B

{4} TRUE

which is trivially true.

This completes the proof of Cancel_assn_inv.2.1.

Cancel_assn_inv.2.2 :

[-I]

[-2]

I
{I}
[2]

(FORALL (a: seat_assignment), (fit: flight):

Sl(flt)(a) IMPLIES seat,exists(aircraft(fit), seat(a)))

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)(a) AND Sl(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

Flt= Flt2

S1

WITH [Flt :=

{a: seat_assignment I Sl(Flt)(a) AND pass(a) /= Pas}](Flt2)(AA)

AND

Sl

WITH [Fit :=

{a: seat_assignment

AND pass(AA) = pass(B)

IMPLIES AA = B

Sl(Flt)(a) AND pass(a) /= Pas}](Flt2)(B)

This finishesoff Cancel_assn_inv.2.1 and we are onto Cancel_assn_inv.2.2. We decide to sim-

pUfywith ASSERT:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:
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Cancel_assn_inv. 2.2 :

[-1]

[-2]

I

[I]
{2}

(FORALL (a: seatlassignment), (flt: flight):

Sl(flt)(a) IMPLIES seat_ezists(aircraft(flt), seat(a)))

(FORALL Ca: seat_assignment), (b: seat_assignment), (flt: flight):

Sl(flt)Ca) AND S1(flt)(b) AND pass(a) = pass(b) IMPLIES a - b)

Flt I Flt2

SI(FIt2)(AA) AND SI(FIt2)(B) AND pass(AA) - pass(B) IMPLIES AA ffiB

Next, we must eliminate the quantifiers in [-2] 11.

Rule? (INST -2 "AA" "B" "Flt2")

Instantiating the top quantifier in -2 with the terms:

(hA B Flt2)

this simplifies to:

Cancel_assn_inv.2.2 :

[-1]

{-2}

I

[1]
[2]

(FORALL (a: seat_assignment), (flt: flight):

Sl(fl_)(a) IMPLIES seat_exists(aircraft(fit), seat(a)))

SI(FIt2)(AA) AND SI(FIt2)(B) AND pass(AA) = pass(B) IMPLIES AA - B

Fit - Flt2

SI(Flt2)(AA) AND SI(Flt2)(B) AND pass(Ah) | pass(B) IMPLIES hA | B

which is trivially true.

This completes the proof of Cancel_assn_inv.2.2.

_is completes the proof of Cancel_assn_inv.2.

Q.E.D.

Run time • 25.77 secs.

Real time | 36.84 secs.

Cancel_assn_inv :

I

{I} (FORALL (flt: flight), (pas: passenger), (sl: assn.sCaCe) :

assn_invariant (sl) IMPLIES assn_invariant (Cancel_assn(flt, pas, sl)))

11The amount of typing required for this command can be reduced through use of the M-s command, which retrieves
the previous commands. By issuing M-s M-s M-s M-s the system retrieves the command that was issued four times
ago, i.e. (INST -3 "AA" "B" "Fit2"). This is easily changed into (INST -2 "AA" "B" "Fit2").
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With the appearance of "Q.E.D." we know we have succeeded. Using the PVS command M-x

edit-proof we can see the total structure of the proof. PVS displays the completed proof as
follows: .....

fill (SKOLEM * ("F!t" "Pas" "SI"))

(EXPAND "assn_ Invariant")

(EXPAND "existence")

(EXPAND "uniqueness")

(EXPAND "Cancel_assn")

(EXPAND "member")

(FLATTEN)

(SPLIT 1)

(("I" (SKOLEM I ("a!l" "flt!l"))

(CASE "Flt - flt:l")

(("i" (ASSERT)

(INST -2 "a!l" "Flt")

(FLATTEN)

(ASSERT)

(PROPAX))

("2" (ASSERT)

(INST-I "a!l" "flt!l")

(PROPAX)) ))

("2" (SKOLEM i ("AA" "B" "Flt2"))

(CASE "Flt = Flt2")

(("1" (ASSERT)

(INST-3 "AA" "B" "Flt")

(FLATTEN)

(ASSERT)

(PROPAX))

("2" (ASSERT)

(INST-2 "AA" "B" "Fit2")

(PROPAX)) ) ) ) )

This may be edited and rerun using the C-c C-c command.

3.2 Proof that Make_assn Maintains the Invariant

In this subsection we will prove the Nake_assn_inv invariant:

Make_assn_inv: THEOREM assn_invariant(sl) _>

assn_ invarlant (Make_ assn (flr, pas, pref, s1))

However, we will perform the proof in a slightly different manner this time--we will prove two lem-

mas before we attack the theorem. We are doing this because we have noticed that assn_invarian¢

consists of two separate properties, existence and uniqueness:

assn_Invariant: function[assn_state -> bool] ,,

(LAMBDA as: existence(as) AND uniqueness(as))

that can be proved separately as lemmas:
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NAe: THEOREM exisZence(sl)

IMPLIES exist ence (Make_ assn (flZ, pas, pref, s i))

MAu: THEOREM uniqueness(s1)

IMPLIES uniqueness (Make_assn(flt ,pas ,pref ,sl))

Then, we will prove Make_assn_inv from these. The order of the proofs is not critical. However,

many times it is valuable to prove that the main theorem follows from the lemma.s so that one does

not prove a useless lemma.

3.2.1 Proof of MAe

We begin with MAe

MAc :

I
{1} (FORALL (fit: flight), (pas: passenger),

(pref: preference), (sl: assn_state):

existence(s1) IMPLIES existence(Make_assn(flz, pas, pref, sl)))

As in the previous proof, we need to eliminate the universal quantifier by skolemization. However,

we will use the SKOSIMP command to do this.

Ruie? (SKOSIMP)

For the top quantifier in i, we introduce Skolem constants:

pref!l s1!i) this simplifies to:

MAe:

(flt!l pas!l

I
{I) existence(sl}l) IMPLIES ezistence(Make_assn(fltgl, pas!l, pref!l, s1!1))

Applying disjunctive simplification to flatten sequent,

this simplifies to:

MAe:

{-I} ezistence(sl!l)

I
{1} exlsZence(Make_assn(flZ!i, pas!1, pref!l, s1!1))

The SKOSIMP command is equivalent to a SKOLEM! command followed by a FLATTEN command.

Note that the names _r the skolem constants are selected by the prover automatically. Next, we

expand the definition of existence:

Ruie? (EXPAND "existence")

Expanding the definition of existence

zhis simplifies to:

MAe:

{-I} (FORALL (a: seat_assignment), (flz: flight):
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I
{1}

member(a, slIl(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))

(FORALL (a: seat_assi&rnment), (flt: flight):

member(a, Make_assn(flt!l, pas!1, pref)1, s1!l)(flt))

IMPLIES seat_exists(aircraft(flt), seat(a)))

We expand the definition of Make_assn:

Rule? (EXPAND "Make_assn")

Expanding the definition of Make_assn

this simplifies to:

MAe :

[-I]

l
{I}

(FORALL (a: seat_assignment), (fit: flight):

member(a, sl!l(flt)) IMPLIES seat_exists(aircraft(fit), seat(a)))

(FORALL (a: seat_assignment), (fit: flight):

member(a,

IF pref_filled(sl!l, flt!1, pref!l)

OR pass_on_flight(pas!1, flt!l, si!1) THEN sl!l

ELSE s1!1

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!l),

pass := pas!l

#), sl!l(flt!l))]

ENDIF(flt))

IMPLIES seat_exists(aircraft(flt), seat(a)))

In the previous theorem we had to expand member several times. So this time we decide to make

this automatic through use of the AUTO-I_WRITE command:

Rule? (AUT0-REWRITE "member")

Installing automatic rewrites:

member,

this simplifies to:

MAe:

[-13

I

[1]

(FORALL (a: seat_assi&qunent), (fit: flight):

member(a, s1!l(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))

(FORALL (a: seat_assignment), (fit: flight):

member(a,

IF pref_filled(sl!1, flt!1, pref!l)

OR pass_on_flight(pas!1, flt!l, s1!1) THEN s1!1

ELSE s1!1 ......

WITH [flt!l :=

add((# seat :- Next_seat(st!l, flt!l, pref!1),

pass :- pas!l

#), sl!l(fit!l))]
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ENDIF(flt))

IMPLIES seat_exists (aircraft (flt), seat (a)) )

Notice that AUTO-REWRITE does not immediately replace member with its definition. The rewrite

will take place when one issues an ASSERT command. We issue another SKOSINP command to

eliminate the universal quantifiers in formula [1]:

Rule? (SKOSIMP)

For the top quantifier in I, we introduce Skolem constants:

this simplifies %o:

MAe :

(a!1 flt!2)

[-i]

l
{I}

(FORALL (a: seat_assignment), (flt: flight):

member(a, sl!l(flt)) IMPLIES seat_exists(alrcraft(flt), seat(a)))

member(a!!,

IF pref_filled(s1!l, flt!1, pref!l)

OR pass_on_flight(pas!l, flt!1, s1!1) THEN s1!1

ELSE sl!l

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!l, pref!l),

pass := pas)l

#), ,1!!(fit!l))]

ENDIF(fit!2))

IMPLIES seat_exis%s(aircraft(flt!2), seat(a!1))

Applying disjunctive simplification to flatten sequent,

this simplifies to:

MAe :

I
{1}

(FORALL (a: seat_assignment), (flt: Slight):

member(a, s1!l(flt)) IMPLIES seat_sxists(alrcraft(flt), seat(a)))

member(a!1,

IF pref_filled(sl!1, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!l, si!1) THEN s1!1

ELSE s1!1

WITH [flt!l :-

add((# seat :- Next_seat(s1!!, Sit!l, pref!l),

pass := pasIl

#), sl!l(fit!l))]

ENDIF(flt!2))

seat_exists(aircraft(fit!2), seat(a!l))

The universal quantifier in {-1} must be removed by quantification. We want the expression

"seat_exists(aircraft(fit), seat(a)))" in formula [-1] to match formula {1}, so a! 1 should

be substituted for a and flt ! 2 for flt. For variety we will use the QUART command rather than the

INST command. Functionally they are identical; however, QUANT requires an extra layer of paten-
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theses (i.e., (QUANT -1 ("a! 1" "fit!2")) does the same thing as the (INST -1 "a!l" "flt !2")

command).

Rule? (QUANT-1 ("a!l" "fit!2"))

Instantiating the top quantifier in -I with the terms:

(a!l flt !2)

this simplifies to:

MAe :

{-1}

[-2]
member(a!l, sl!l(flt!2)) IMPLIES seat_exists(aircraft(fit!2), seat(a!l))

member(a!l,

IF pref_filled(sl!l, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!l, sl)l) THEN s1!l

ELSE sl!l

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!1, pref!l),

pass := pas!l

#), sl! l(flt! 1))]

ENDIF(flt!2))

l
[1] seat_exists(aircraft(fit!2), seat(a!l))

We simpHfywith ASSERT:

Rule? (ASSERT)

Rewriting member(a!l, sl!l(fltI2)) to sl!l(flt!2)(a!l).

Rewriting member(all,

IF pref_filled(s1!l, flt!l, pref!1)

OR pass_on_flight(pas!l, flt!l, s1!1) THEN s1!1

ELSE s1!1

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!1), pass

#), sl!l(flt!l))]

ENDIF(flt!2)) to IF pref_filled(sl!l, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!l, sl!l) THEN sl!l

ELSE sl!l

WITH [fltIl :=

add((# seat := Next_seat(sl!l, fltIl, pref!l), pass

#), sl!l(flt)l))]

ENDIF(flt!2)(a!I).

Invoking decision procedures,

this simplifies go:

MAe :

:= pas!l

:= pas!l

{-I} IF pref_filled(sl!l, flt!l, pref!l)

DR pass_on_flight(pas!l, flt!l, sl!1) THEN sl!l

ELSE s1!1

WITH [flt!1 :=

add((# seat := Next_seat(s1!1, flt!l, pref!1), pass := pas!l
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I
{1}

[2]

#), sltl(flt!l))]

ENDIF(fit!2)(a!l)

sl!l(flt!2)(a!l)

seat_exists(aircraft(fl%!2), seat(a!1))

We notice that the rewrites of member takes place at this time. We a/so notice that the IF THEN

ELSE structure in formula {-1} is not at the outer most level (i.e. the text (flt:2)(a[1) follows

the ENDIF), so we issue a LIFT-IF command:

Rule? (LIFT-IF-I)

Lifting IF-conditions to the top level,

this simplifies to:

MAe :

{-1}

I

[I]

[2]

IF pref_filled(sl!1, fi%!1, pref!l)

OR pass_on_flight(pas!l, fi%!I, s1!1) THEN sl!l(flt!2)(a!l)

ELSE

s1!1

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!l, pref!l), pass :- pas!1

#), sl!l(flt!l))](flt!2)(a!l)

ENDIF

sl!1(fl%!2)(a!l)

seat_exists(aircraft(fit!2), seat(a!1))

Now that the IF THEN ELSE is at the outermost level it can be sp_t into two sequents using the

SPLIT command (i.e., IF A THEN B ELSE C ENDIF is equiv_ent to A D B A NOT A D C.) Thus,

we use a SPLIT command:

Rule? (SPLIT -1)

Split%ing conjunctions,

this yields 2 subgoals:

MAe.1 :

{-I}

I

[I]

[2]

(pref_filled(sl!l, fit!l, pref!l) OR pass_on_flight(pas!l, fl%!l, sl!l))

AND sl!1(flt!2)(a!l)

sl!l(f!t!2)(a!l)

sea%_exlstsCaircraf%(fl%!2), seatCa!l))

Weissue the GROUND command to finish off the proofofthis sequent:

Rule? (GROUND)

Applying propositional simplification and decision procedures,

This completes the proof of NAe.1.

NAe.2 :
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{-1}

I
[11

[2]

NOT

(pref_filled(sl!l, flZ!l, pref!l)

OR pass_on_flight(pas!l, flZ!l, s1!1))

AND

sl!l

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!1, pref!l), pass := pas!l

#), sl !l(flZ! I))] (flt !2) (a! I)

slIl(flZ!2)(a!l)

seaZ_exists(aircraft(flZ)2), seat(a!l))

The ground procedures simplify the sequent to the point where PVS recognizes the formula as

true. PVS writes "This completes the proof of MAe. I" and turns our attention to MAe.2.

Encouraged by our progress, we decide to expand add according to its definition:

Rule? (EXPAND "add")

Rewriting member(y, sl!l(flt!l)) to sl!l(flr!l)(y).

Expanding the definition of add

this simplifies to:

MAe.2 :

{-1}

I

E1"1
[23

NOT

(pref_filled(sl!l, fit!i, pref!l)

OR pass_on_flighZ(pas!l, flt!l, sl!l))

AND

s1!1

WITH [flr!l :=

{y: [# seat: [row, position], pass: passenger #]

(# seat := Next_seat(sl!l, flr!l, pref!l), pass

OR sl!l(flZ!l)(y)}](flt!2)(a!l)

I

:= pas!l #) - y

sl! l(flz!2) (a! I)

seat_exists(aircraft(flz !2), seat(a! I))

There is nothing in the antecedent formula that will make [1] or [2] true by itself. Formula [2] asserts

that the seat determined by seat(a! 1) actually exists. But formula{-1} tells us that seat(a! 1) is

obtained from the Next_seat function. In our specification, we left these functions as uninterpreted

functions. Earlier we stated that we would need a property about these functions in order to make

the proofs go through. This is where we recognize this need. T_e desired property is also obvious--

the property given in the Next..se-at_ax _om: We make this axiom av_qa_ble-l_n-the sequent by

use of the L_:_A coinmand: .......

Rule? (LEMMA "NexZ_seaZ_ax")

Applying Next_seat_ax where

this simplifies to:

MAe. 2 :
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{-1}

[-2]

(FORALL (fit: flight), (pref: preference), (sl: assn_state):

NOT pref_filled(sl, flt, pref)

IMPLIES seat_exists(aircraft(fit), Next_seat(s1, flt, pref)))

NOT

(pref_filled(sl!1, flt!1, pref!l)

OR pass_on_fliEht(pas!1, flt!l, s1!1))

AND

s1!1

WITH [flt!l :=

{y: [# sear: [row, position], pass: passenger i] I

(# seat := Next_seat(sl!l, flt!l, pref!l), pass :- pas!l I)

DR sl!l(flt!l)(y)}](flt!2)(a!1)

-y

I
[13 sl!l(fit!2)(a!l)

[2] seat_exists(aircraft(flt!2), seat(a!l))

Whenever oneintroduces alemma one usuMly must quantifythe universM variabbsin thislemma:

Rule? (INST -I "flt!l " "pref!l" "sl!l")

Instangiatin E the top quantifier in -1 with the te_s:

(flt!l pref!l s1!1)

this simplifies to:

MAe.2 :

{-1}

[-2]

I
[1]

[2]

NOT pref_filled(sl!l, flt!l, pref!l)

IMPLIES seat_exists(aircraft(fit!l), Next_seat(sl!l, flt!l, pref!l))

NOT

(pref_filled(sl!1, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!l, s1!I))

AND

s1!1

WITH [flt!l :-

{y: [# seat: [ro., position], pass: passenger #] I

(# sear := NexLseat(sl!l, flt!l, pref!l), pass :- pas!1 I) - y

OR sl!l(flt! I) (y)}] (flt!2) (a!l)

sl!l(flt!2)(a!l)

seat_exists(aircraft(flt!2), seat(a!l))

We now issue a GROUND command:

Rule? (GROUND)

Applying propositional simplification and decision procedures,

this simplifies to:

MAe.2 :

{-I}

{-2}

seat_exists(aircraft(fit!l), Next_seat(sl!l, flt!l, pref!l))

sill

WITH [flt!l :-

33



I
{1}
{2}

[3]
[4]

{y: [# seat: [row, position], pass: passenger #]

(# seat := Next_seat(sl!l, flt!1, pref)l), pass

OR sl! l(flt! i)(y)}] (flt!2) (a! 1)

pref_filled(sl!l, flt!l, pref!1)

pass.on_flight(pas!l, flt!l, st!l)

sl!l(flt!2)(a!l)

seat_exists(aircraft(flt!2), seat(a!1))

l

:= pas!1 #) = y

We notice that formula {m2} modifies sl!l at fit! 1 but then retrieves the value for fit !2. For

all cases other than flt ! 1 = flt !2 this formula would be much simpler. Therefore, we perform a

case split on flt ! 1 = flt ! 2:

Rule? (CASE "flt!l = flt!2")

Case splitting on

flt!l = fltI2,

this yields 2 subgoals:

MAe.2.1 :

{-i}

[-2]
[-3]

[1]
[2]
[3]
[4]

flt!l = flt)2

seat_exists(aircraft(flt!l), Next_seat(sl!l, flt!1, pref!1))

s1!I

WITH [flt!l :=

{y: [# seat: [row, position], pass: passenger #] I

(# seat := Next_seat(s!!i, flt!i_pref!l), pass := pas!l #) = y

pref_filled(sl!l, flt!l, pref[!)l

pass_on_flight(pas!i, fit!i, slil)

sl!1(flt!2)(a!l)

seat_exists(aircraft(flt!2), seat(a!1))

Weissue a GROUND command to finish off this sequent:

Rule? (GROUND)

Applying propositional simplification and decision procedures,

This completes the proof of MAe.2.1.

MAe.2.2 :

[-i]

[-2]

I
{1}

seat_exists(aircraft(fit!l), Next_seat(sl!l, flt!l, pref!i))
sl!l

WITH [flt!l :-

{y: [# seat: [row, position], pass: passenger #] I .....

(# seat := Next_seat(si!1, flt!1, pref!1), pass := pas!1 #) = y

OR sl!l(flt!l)(y)}](flt!2)(a!l)

flt!l = flt!2

34



[2] pref_filled(s111, flttl, pref!l)

[3] pass_on_flight(pas!l, flt!l, s1!1)

[4] s1!l(flt!2)(a!l)

[S] seat_exists(aircraft(flt!2), seat(a!1))

The theorem prover presents us with MAe2.2. Weissue another GROUND command:

Rule? (GROUND)

Applying propositional simplification and decision procedures,

This completes the proof of MAe.2.2.

This co_letes the proof of NAe.2.

Q.E.D.

Run time = 13.18 secs.

Real time = 23.47 secs.

MAe :

I
{1} (FORALL (flt: flight), (pas: passenger),

(pref: preference), (sl: assn_state):

existence(s1) IMPLIES existence(Make_assn(flt, pas, pref, sl)))

We are happy to see the arrival of "Q.E.D." but then remember that MAu and the main theorem

still await us. The complete proof is displayed by M-x edit-proof as:

IllI (SKOLEM 1

("flt !1" "pas !1" "pref !1" "sl !1"))

(FLATTEN)

(EXPAND "existence")

(EXPAND "Make_assn")

(AUTO-REWRITE "member")

(SKOLEM 1 ("a!l" "flt!2"))

(FLATTEN)

(QUANT-I ("all" "fit!2"))

(ASSERT)

(LIFT-IF -I)

(SPLIT -1)

((" i" (GROUND))

("2" (EXPAND "add")

(LEMMA "Next_seat_ax")

(INST-I "flt!l " "pref!l" "s1!1")

(GROUND)
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(CASE "flt!1 ,, flt!2")

(("1" (GROUND)) ("2" (GROUND))))))

3.2.2 Proof of MAu

This lemma is a little harder than MAe, but encouraged by past success we eagerly press on, issuing

M-x pr on Mhu:

MAu :

l

{1} (FORALL (flt: flight), (pas: passenger),

(pref: preference), (sl: assn_state):

uniqueness(sl) IMPLIES uniqueness(Make_assn(flt, pas, pref, sl)))

The firststep isfairlyroutine by now--we eliminate the universal quantifiers:

Rule? (SKOSIMP)

For the top quantifier in I, we introduce Skolem constants: (flt!l pas!1

pref)l sl!1) this simplifies to:

MAu :

I

{1} uniqueness(sl!l) IMPLIES uniqueness(Make_assn(flt!l, pas!1, pref!l, sl!l))

Applying disjunctive simplification to flatten sequent,

this simplifies to:

MAu :

{-1]"

I
{1}

uniqueness(st!l)

uniqueness(Make_assn(flt!1, pas!1, _ref!l, s1!1))

We know that the Make_assn function is defined using the sots theory in the prelude, so we

decide to automate the expanding of the functions in this theory using the AUT0-REWRITE-THEDRY

command. This command is similar to the Avr0-REWRITE command except that instead of naming

a particular function that is to be automatically expanded, one just provides the name of a theory.

All of the functions in this theory will automatically be expanded when an ASSERT command is

issued.

Rule? (AUT0-REWRI_'THEORY "sets [seat_assignment] ")

Adding rewrites from theory sets[seat_assignment]

Adding

Adding

Adding

Adding

Adding

Adding

rewrite rule member

rewrite rule union

rewrite rule intersection

rewrite rule difference

rewrite rule add

rewrite rule remove
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Adding rewrite rule singleton

Adding rewrite rule subset?

Addin E revrite rule strict_subset?

Addin E re.rite rule empty?

Adding rewrite rule emptyset

Adding re.rlte rule nonempty?

Adding re.rite rule fullset

Adding rewrite rule disjoint?

Adding re.rite rule extensionaliZy

Auto-rewritten theory sets[seat_assi&qunent]

Rewriting relative to the theories:

sets[seat_assignment],

NIL,

NIL,

this simplifies to:

MAu :

[-1] uniqueness(sl!l)

l

[1] uniqueness(Make_assn(flt!l, pas!1, pref!1, s1!1))

The prover Usts the names of the functions _omthe sets theory that will automatically be ex-

panded. We now expand uniqueness:

Rule? (EXPAND "uniqueness")

Rewritin E member(a, sl!1(flt)) to sl!l(flt)(a).

Rewriting member(b, sl!l(flt)) to s1!l(flt)(b).

Rewriting member(a, Make_assn(flt!l .... )(flt)) to Make_assn(flt!1,

Rewriting member(b, Make_assn(flt!l, ...)(flt)) to Make.assn(flt!1.

Expanding the definition of uniqueness

this simplifies to:

MAu :

{-1}

I

_1}

...)(fit)(a).

...)(flt)(b).

(FORALL (a: seat_assignment), (b: seat_assi&mment),. (flt: flight) :

sl!l(flt)(a) AND sl!l(flt)(b) AND pass(a) - pass(b) IMPLIES a - b)

(FORALL (a: seat_assignment), (b: seat_assignment), (fit: flight):

Make_assn(flt!l, pas!l, pref!l, sl!l)(flt)(a)

AND Make_assn(flt!l, pas!l, pref!l, sl!l)(flt)(b)

AND pass(a) = pass(b) -_-

IMPLIES a = b)

We remove the universal quantifiers in formula {1} using SKOSIMP:

Rule? (SKOSIMP)

For the top quantifier in 1. we introduce Skolem constants:

this simplifies to:

MAu :

(a!l b!l flZ!2)
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[-1] (FORALL (a: seat_assignment), (b: seat_assignment), (flz: flight):

sl!l(flt)(a) AND s1!1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

I .......

{1} Make_assn(flt!l, pas!l, pref!1, sl!l)(flt!2)(a!l)

AND Make_assn(flt!1, pas!1, pref!1, sl!1)(flt!2)(b!l)

AND pass(a!1) = pass(b!1)

IMPLIES a!l = b!l

Applying disjunctive simplification to flatten sequent,

this simplifies to:

MAu :

[-1]

{-2}

{-3}
{-4}

I
{1} aIl= b!l

Weinstantiate _rmula[-1] with the constantsjust created in the previous skolemization:

Rule? (INST -I "a!l" "b!l" "flt!2")

Instantiating the top quantifier in -1 with the terms:

(a!l b!l flt!2)

this simplifies to:

MAu :

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight):

sl!l(flt)(a) AND sl!l(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)

Make_assn(flt!1, pas)l, pref!l, sl!l)(flt)2)(a!l)

Make_assn(flt!l, pas)1, pref!l, sl!l)(fltI2)(b!1)

pass(a!l) = pass(b!l)

{-1}

[-2]

[-3]
[-4]
I

[1]

sl!l(flt!2)(a!l) AND sl!l(flt!2)(b!l) AND pass(a!l) = pass(b!l)

IMPLIES a!l = b!l

Make_assn(flt!l, pas!l, pref)l, sl!l)(flt!2)(a!l)

Make_assn(flt!l, pas!l, pref!l, sl!l)(flt!2)(b!l)

pass(a!1) = pass(b!1)

a!l = b!l

We reMize we aren't going muchfurther until we expand Make_assn:

Rule? (EXPAND "Make_assn")

Expanding the definition of Make_assn

Zhis simplifies to:

MAu :

sl!l(flt!2)(a!l) AND sl!l(flt!2)(b!l) AND pass(a!l) = pass(b!1)

IMPLIES a!l = b!l

IF pref_filled(sl!l, flt!l, pref!1)

OR pass_on_flight(pas!l, flt!l, sl!l) THEN s1!1

ELSE s1!1

WITH [flt!l :=
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{-3}

[-4]

I
[1] a!l : b!l

We are ready _r member to be rewritten so we issue an ASSERT command:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:

MAu :

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass :- pas!1

#), s1!1(flt!1))]

ENDIF(flt!2)(a!I)

IF pref_filled(sl!l, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!1, sl!l) THEN s1!1

ELSE s1!1

WITH [flt!l :=

add((# seat := Next_seat(st!I, flt!l, pref!l), pass := pas!1

#), sl!l(flt!l))]

ZNDIF(flt_2)(b_1)

pass(a!1) = pass(b!1)

[-I]

[-2]

[-3]
I

{1}
[2]

IF pref_filled(s1!l, flt!l, pref!l)

OR pass_on_flight(pas!l, fl:!l, sl!l) THEN sl!l

ELSE s1!1

WITH [flt!l :=

add((# seat := Next_seat(sl!l, fl¢!l, pref!l), pass

#), sl!l(flt!l))]

ENDIF(flt!2)(a!I)

IF pref_filled(sl!l, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!1, si!i) THEN sl!l

ELSE s1!1

WITH [flt!1 :=

add((# seat := Next_seat(s1!1, flt!l, pref!l), pass

#), si_i(fit!1))]
ENDIF(fit!2)(b!l)

pass(a!l) = pass(b!l)

:- pas!l

:= pas!1

sl!l(flt!2)(a!l) AND sl!l(flt!2)(b!l)

a!l = b!l

We notice that the IF-THEN-ELSE structures in formulas {-1} and {-2} are not at the outermost

_vel, so we issue a LIFT-IF command:

Rule? (LIFT-IF -1 -2)

Lifting IF-conditions to the top level,

this simplifies to:

MAu :

{-1} IF pref_filled(sl!l, flt!l, pref!l)
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{-2}

OR pass_on_flight(pas!l, flt!1, sl!1)

ELSE

sl!l

WITH [flt!1 :=

add((# seat := Next_seat(sl!l, flt!l.

#), sl!l(flt!l))](flt!2)(a!l)

ENDIF

IF pref_filled(sl!1, flt!1, pref)l)

OR pass_on_flight(pas!1, fl_!l, si!I)

ELSE

s1!1

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!l,

#), sl! 1(flt !1))] (fl_ !2) (b! 1)

ENDIF

[-3] pass(a!1) = pass(b!1)

I
[I] sl!l(flt!2)(a!1) AND sl!l(flt!2)(b!l)

[2] a!l = b!l

A case split on flt!1 = fi%!2 seems in order:

Rule? (CASE "flt!l = flt!2")

Case spli:ting on

flt!l = flt!2,

this yields 2 subgoals:

MAu.1 :

THEN s1!l(flt!2)(a!l)

pref!l), pass := pas!l

THEN sl!l(flt!2)(b)l)

pref!l), pass := pas!l

{-I} flt!1 = flt!2

[-2] IF pref_filled(sl!l, flt!1, pref!l)

OR pass_on_flight(pas!l, flt!1, st!l)

ELSE

sl!l

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!1,

#), sl!l(flt!l))](fltI2)(a!l)

ENDIF

[-3] IF pref_filled(s1!l, flt!l, pref!l)

OR pass_on_fliEht(pas!l, fi%!1, s1!1)

ELSE

s1!1

WITH [flt!1 :=

[-4]
I

[I]

THEN sl!l(flt!2)(a!l)

pref!l), pass := pas!l

THEN sl!l(flt!2)(b!l)

add((# seat := Next_seat(s1!1, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))](flt!2)(b!l)

ENDIF

pass(a!1) = pass(b!1)

sl!l(flt!2)(a!l) AND sl!l(flt!2)(b!l)
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[2] all = b!l

We now collapse the IF THEN ELSE structure with a GROUND command:

Rule? (ground)

Applying propositional simplification and decision procedures,

this yields 2 subgoals:

MAu.l. 1 :

{-1}

{-2]"

[-3]
[-4]
I

{i}

.[2}

.[3}
{4}

{s}
[6]

sl!l

WITH [flt!l :=

add(C# seat := Next_seat(sl!l, fl%!l, pref!l), pass := pasgl

#), s1!1(flt!1))](fltt2)(b!1)
si!1

WITH [flt!l :=

add(C# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))](flt!2)(a!l)

flt!l = fi%!2

pass(a!1) = pass(b!l)

pref_filled(sl!1, flt!l, pref!l)

pass_on_flight(pas!l, flt!l, sl!l)

pref_filled(sl!l, flt!l, pref!l)

pass_on_flight(pas!l, fi%!i, s1!1)

sl!l(flt!2)(a!l)

a!l = b!l

The GROUND command produces two subgoMs. We notice that formulas {3} and {4 } are identicM

to _rmulas {1} and {2}, so we hide {3} and {4} to remove the clutter:

Rule? CHIDE 3 4)

Hiding formulas: 3, 4,

this simplifies to:

MAu. I.1 :

[-1]

[-2]

[-3]

[-4]
]

El]
[2]

[3]
[4]

sl!l

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass

#), sl!lCfit!i))](fit!2)(b!%)

el!l

WITH [flr!l :=

add((# seat := Next_seat(sl!l, fl_!l, pref!l), pass

#), sl!l(fl%!l))](flt!2)(a!l)

fl_!l = fi%!2

pass(a!1) = pass(b!1)

pref_filled(s1!1, flt!l, pref!l)

pass_on_flight(pas!l, flt!l, sl!l)

sl!l(flt!2)(a!1)

a!l = b!l

:= pas!l

:= pas:l
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We need to establish that a!l - b!l given that pass(a!l) = pass(b:1).

pass_on_flight constrains the passenger fields to be unique, so we expand it:

Rule? (EXPAND "pass_on_flight")

Rewriting member(a, sl!l(flt!l)) to sl!l(flt!l)(a).

Expanding the definition of pass_on_fliEh_

this simplifies to:

MAu. 1.1 :

We remember that

E-l]

[-2]

[-3"1

[-4]
I

[I]
{2}
[3]

[4]

sl!l

WITH [flt!l :-

add((# sea_ := Nex__seat(sl!i, fl_!1, pref!l), pass

#), sl ! l(flt) 1))] (flt !2) (b! 1)

sl!l

WITH [flt!l :-

add((# seat := Next_seat(sl!1, flt!l, pref!l), pass

#), sl!l(flt!l))](flt!2)(a!l)

flt!l = flt!2

pass(a!l) = pass(b!1)

:= pas!l

:= pas!l

pref_filled(s1!l, flt!1, pref!l)

(EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!l)(a))

sl!l(flt!2)(a!1)

a!1 = b!l

We are ready to instantiate formula {2}, but then realize that we are going to need two instances of

it, one for a! 1 and one for b! 112. Thus, we will use the INST-CP command which saves the original

form of the formula in addition to the instantiated form:

Rule? (INST-CP 2 "a!1")

Instantiating the top quantifier in 2 with the terms:

a!l, ,

this simplifies to:

MAu. I.1 :

[-i]

[-2]

[-3]
[-4]
I

[i]

si!1

WITH [flt!1 :-

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), sl!I(fit!i))](flt_2)(b!i)
sl!l

WITH [flt!l :-

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))] (flt!2) (a! I)

flt!l - flt!2

pass(a!1) = pass(b!1)

pref_filled(sl!l, fit!l, pref!l)

12It actually took me about an hour to figure this out.
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[2] (EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!1)(a))

{3} pass(a!l) = pas!l AND s1!l(flt!l)(a!l)

[4] s1!l(flt!2)(aI1)

[5] a!l = b!1

Now we can instantiateit with b!l as well:

Rule? (INST 2 "b!l")

Instant#at#rig the top quantifier in 2 with the terms:

b!l,

this simplifies to:

MAu. I.1 :

[-13

[-2]

[-3]

[-4]

I

[1]

{2}

[3]

[4]

[5]

We issue an

sl!l

WITH [fi%!1 :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!1

#), sl!l(flz!l))](flZ!2)(b!l)

sl!l

WITH [flZ!l :--

add((# seat := Next_seat(s1!1, fi%!I, pref!l), pass := pas!l

#), sl! l(flt! 1))] (fit!2) (a!l)

flt Ii - flt !2

pass(a! I) = pass(b! 1)

pref_filled(sl!l, flZ!l, pref!i)

pass(b!l) = pas!l AND sl!l(flt!l)(b!l)

pass(a!l) - pas!l AND sl!l(flt!l)(a!l)

sl!l(flt!2)(a!l)

a!l _ b!l

ASSERT command to complete the proof of this sequent:

Rule? (ASSERT)

Rewriting member(b!l, sl!l(flZ!l)) to sl!l(flZ!l)(b!l).

Rewriting add((# seat :: Next_seat(s1!!, flt!l, pref!l), pass :- pas!l #),

sl!l(flt!l))(b!l) to (# seat := Next_seat(st!l, flZ!l, pref!l),

pass := pas!1 #) - b!l OR sl!1(flt!l)(b!l).

Rewriting member(a!1, sl!1(flt!l)) to FALSE.

Rewriting add((# seat := Next_seat(s1!1, flt!l, pref!l), pass :- pas!l #),

sl!l(flz!l))(a!l) to (# seat := Next_seat(st!l, flt!l, pref!l),

pass := pasI1 #) - a!l.

Invoking decision procedures,

This completes the proof of MAu. I.I.

MAd. 1.2 :
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{-I}

{-2}

[-3]

[-43
I

{1}
{2}
{3}

{4}
{s}

[6]

sl!l

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!l, pref!l), pass

#), sl!l(flt!l))](flt!2)(b!l)

sl!l

WITH [fi%!I :=

add((# seat := Nex%_sea%(sl!l, flt!l, pref!l), pass

#). sl!l(flt!l))l(fl¢!2)(a!l)

flt!l = flt!2

pass(a!l) = pass(b!l)

pref_filled(sl!l, flt!l, pref!l)

pass_on_flight(pas!l, flt!l, sl!l)

pref_filled(sl!1, flt!1, pref!1)

pass_on_flight(pas!l, flt!l, s1!1)

sl!l(flt!2)(b!1)

a!1 = b!l

:= pas!l

:= pas!l

PVS tells us, "This completes the proof of MAu. i. 1" and presents Mhu. 1.2 to us. Once again

we notice that formulas {3} and {4 } are identical to formulas {1} and {2}, so we hide {3} and {4}
to remove the clutter:

Rule? (HIDE 3 4)

Hiding formulas: 3,

this simplifies to:

MAu. I.2 :

4_

As in

[-13

[-2]

[-3]

[-4]

I
[I]

[2]
[3]
[4]

sl!l

WITH [fl%!l :=

add((# seat := Nex%_seat(sl!l, flt!l, pref)l), pass := pas!l

#), sl!l(flt!l))](flt!2)(b!l)

sl!l ...........

WITH [flt!l :=

add((# seag := Nexg_seat(sl)l, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))](flt!2)(a!l)

flt!l = flt!2

pass(a!l) - pass(b!!)

pref_filled(s1!1, flt!l, pref!1)

pass_on_flight(pas!1, fltI1, sl!l)

sl!1(fl%!2)(bI1)

a!l = b!l

the other subgoM, we expand pass_onJlight:

Rule? (EXPAND "pass_on_flight")

Rewriting member(a, sl!1(fl%!1)) to sl!l(flt!l)(a).

Expanding the definition of pass_on_flight

this simplifies %o:

44



MAu.l.2 :

t-l]

1"-21

[-31

[-4]
I

[1]
{2}
[3]
[4]

s1!1

WITH [flt!l :-

add((# seat := Next_seat(st!l, flt!l, pref)1), pass := pas!1

#), sl!l(flt!1))] (fltI2)(b!l)

sl!l

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), sl! l(flt! 1))] (flt!2) (a!l)

f1_!1 = f1¢!2

pass(a!1) = pass(b!1)

pref_filled(sl!l, flt!1, pref!l)

(EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!1)(a))

s1!1(flt!2)(b!l)

a!l = b!l

and doubly instantiate formula 2:

Rule? (INST-CP 2 "a!l")

Instantiating the top quantifier in 2 with the terms:

a!l, ,

this simplifies to:

MAu. I.2 :

[-11

[-2]

[-31

[-4]
I

[1]
[21
{3}

[4]
[s]

sl!l

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), sl! l(flt! I))1 (flt!2) (b! 1)

sl!l

WITH [flt!1 :=

add((# seat := Next_seat(s1!1, flt!l, pref!l), pass := pas!l

#), sl! 1(flt! I))3 (flt!2) (a! 1)

flt!l - flt!2

pass(a!1) = pass(b!1)

pref_filled(sl!l, fir!l, pref!l)

(EXISTS (a: seat_assignment): pass(a) = pas!l AND s1!l(flt!l)(a))

pass(a!1) - pas!l AND sl!l(flt!l)(a!l)

s1!l(flt!2)(b!l)

a!1 - b!l

Rule? (INST 2 "b!l")

Instantiating the top quantifier in 2 with the terms:

b!l,

this simplifies to:
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MAu. 1.2 :

[-i]

[-2"1

[-3]
[-43

i
[i]
{2}
[3]
[4]
[5]

s1!1

WITH [flt!l :=

add((# seat := Next_sea¢(sl!l, flt!l, pref)l), pass := pas!l

#), sl! l(flt ! 1))] (flt !2) (b! 1)

s1!1

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))](flt!2)(a!l)

flt!l = flt!2

pass(a!1) = pass(b!1)

pref_filled(sl!l, flt!l, pref!l)

pass(b!1) = pas!l AND sl!l(flt!l)(b!l)

pass(a!1) = pas!l AND sl!l(flt!l)(a!l)

sl!l(flt!2)(b!l)

a!l = b!l

We issue an ASSERT command to simplify:

Rule? (ASSERT)

Rewriting member(b!1, sl!l(flt!l)) to FALSE.

Rewriting add((# seat := Next_seat(s1!1, flt!l, pref!1), pass := pas!l #),

sl!l(flt!l))(b!l) to (# seat := Next_seat(s1!1, flt!l, pref!l),

pass := pas!1 #) = b!l.

Rewriting member(a!1, sl!l(flt!l)) to sl!l(flt!l)(a!1).

Rewriting add((# seat := Next_seat(s1!1, fltI1, prefI1), pass := pas!1 #),

sl!l(flt!l))(a!l) to sl!l(flt!l)(a!1).

Invoking decision procedures,

this simplifies to:

MAu. I.2 :

{-I}

{-2}
[-3]

[-4]
I

[i]
{2}
[3]
[4]

(# seat := Next_seat(s1!1, flt!l, pref!l), pass := pas!l #) = bI1

sl!l(flt!l)(a!l)

flt_1 = flt_2

pass(a!1) = pass(b!1)

pref_filled(sl!l, flt!1, pref!1)

TRUE

sl!l(flt!2)(b!1)

a!l = b!l

which is trivially true.

This completes the proof of MAu.l.2.
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This completes the proof of MAu. I.

MAu.2 :

[-i]

[-23

[-3]
I

{i}
[2]
[3]

IF pref_filled(s111, flt!l, pref!l)

OR pass_on_fligh_(pas!l, flt!1, si!1) THEN s1!l(flt!2)(a!1)

ELSE

s1!1

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flr!1, pref!l), pass := pas!l

#), s1!l(fl_!1))](fl_!2)(a!l)

ENDIF

IF pref_filled(sl!l, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!l, s1!1) THEN sl!l(flt!2)(b!l)

ELSE

s1!1

WITH [fl_!l :=

add((# sear := Next_seat(si!1, flt!1, pref!l), pass := pas!i

#), sl!l(flt!l))](flt!2)(b!l)

ENDIF

pass(aIl) = pass(b!1)

flt!l = flt!2

sl!l(flt!2)(a!1) AND sl!l(flt!2)(b!l)

a!l = b!l

We are rewarded by our perspicaciousness. PVS in_rms us that the proof of MAu. 1.2 is complete

and thus MAu. 1. as weB. It then presents us with MAu. 2. We issue an ASSERT command to simpnfy:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:

MAu.2 :

{-1}

{-2}

[-3]

I

Ill

[2]

[3]

sl!l(fit!2)(a!l)

sl!l(fi_!2)(b!l)

pass(a!l) = pass(b!l)

flt!l = flt!2

sl!l(flt!2)(a!l) AND sl!l(flt!2)(b!l)

a!l = b!l

We issue another ASSERT command:

Rule? (ASSERT)

Invoking decision procedures,

this simplifies to:

MAu.2 :
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[-1]

[-2]
[-3]
l

[1]

{2}
[3]

sl!l(flt!2)(a!l)

sl!l(flt!2)(b!l)

pass(a!1) = pass(b!1)

flt!1 = flt_2

TRUE

all = b!l

which is trivially true.

This completes the proof of MAu.2.

O.E.D.

Run Zime = 45.09 secs.

Real time = 291.16 secs.

MAu :

I
{1} (FORALL (fit: flight), (pas: passenger),

(pref: preference), (sl: assn_state):

uniqueness(sl) IMPLIES uniqueness(Make_assn(flt, pas, pref, sl)))

M-x edit-pr displays the complete proof as follows:

("" (SKOLEM 1

("flt!l" "pas!1" "pref!1" "si!I"))

(FLATTEN)

(ALrFO-REWRITE-THEORY "sets[seat_assignment]")

(EXPAND "uniqueness")

(SKOLEM 1 ("a!l" "b!l" "flt!2"))

(FLATTEN)

(INST -1 "a!1" "b!1" "flt!2")

(EXPAND "Make_assn")

(ASSERT)

(LIFT-IF -1 -2)

(CASE "flt_1 = flt_2")
(("1" (GROUND)

(("i" (HIDE 3 4)

(EXPAND "pass_on_flight")

(INST-CP 2 "a!l")

(INST 2 "b!l")

(ASSERT))

("2" (HIDE 3 4)

(EXPAND "pass_on_flight")
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11211

(INST-CP 2 "a!l")

(INST 2 "b!l")

(ASSERT)

(PROPAX))))

(ASSERT) (ASSERT) (PROPAX))))

This completes the two lemmas.

3.2.3 Proof of Theorem

We now must show that these two lemmas imply Make_assnAnv. This is very straight forward and

the details are left to the reader. Hint: M-x edit-pr on this theorem gives

("" (SKOSIMP)

(EXPAND "assn_ invariant" )

(LEMMA "MAe")

(INST-I "flt!l " "pas!l " "pref!l " "sl!l")

(LEMMA "MAu")

(INST-I "flt!l " "pas!l " "pref!l " "sl!l")

(GROUND))

3.3 Proof that the Initial State Satisfies the Invariant

It is necessary to show that the initial state of the system satisfies the invariant. This together with

the invariant-preserving properties about the operations are sufficient to establish that the system

will always preserve the invariant. The needed theorem for the initial state is:

initial_state_inv: THEOREM assn_invarian%(initial_sta%e)

This theorem is easy to prove. In fact, the PVS strategy for proving TCCs almost proves it without

help. This strategy is automatically invoked when one issues a M-x top command to prove the

TCCs. However, this strategy is also available during interactive proof by typing (TCC) :

initial_state_inv :

I
{I} asen_invariant(initial_state)

Rule? (TCC)

Rewriting initial_state(flt) to emptyse%[seat_asslgnmen%].

Rewriting

Rewriting

Rewriting

(FORALL

Rewriting

Rewriting

Rewriting

Rewri%ing

Rewriting

Rewriting

emptyset[seat_assignment](a) to FALSE.

member(a, emptyset[sea%_assignmen%]) %0 FALSE.

existence(initial_state) to

(a: seat_assi&qunent), (flt: flight): TRUE).

initial_state(fit) to emptyset[seat_assignment].

emp%yset [sea%_assignment](a) to FALSE.

member(a, emptyset[seat'assignment]) to FALSE.

initial_s%a%e(fl%) %0 emptyse%[seat_assiEnmen%].

emptyset[seat_assiEnment](b) to FALSE.

member(b, emptyset[seat_assi&nlment]) %0 FALSE.
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Rewriting uniqueness(initial_state) to

(FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight): TRUE).

Rewriting assn_invariant(initial_state) to

(FORALL (a: seat_assignment), (flt: flight): TRUE)

AND (FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight): TRUE).

Trying repeated skolemization, instantiation, and if-lifting,

this yields 2 subgoals:

initial_state_inv.1 :

I

{I} (FORALL (a: seat_assignment), (flt: flight): TRUE)

The TCC strategy has created two subgoals. Each of these are completed by issuing a single SKOSIMP
command:

Rule? (SKOSIMP)

For the top quantifier in I, we introduce Skolem constants: (a!l flt!l)

this simplifies to:

initial_state_inv.l :

I

{1} T R_ .....

which is trivially true.

This completes the proof of initial_state_inv.1.

initial_state_inv.2 :

I
{1} (FORALL (a: seat_assignment), (b: seat_assignment), (flt: flight): TRUE)

Rule? (SKOSIMP)

For the top quantifier in I, we introduce Skolem constants: (a!l b!l flt!l)

this simplifies to:

initial_state_inv.2 :

I

{1} TRUE

which is trivially true.

This completes the proof of initial_state_inv.2.

Q.E.D.
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Run time = 3.78 secs.

Real time = 5.74 secs.

NIL

>

3.4 Proof of one_per_seat Invariant

The third invariant of the system has not been dealt with in the previous sections. As mentioned

earlier, the proofs of these theorems are left to the reader for an exercise. The required theorems

for the Cancel_assn and Make_assn operations are

Cancel_inv_one_per_seat: THEOREM one_per_seat(s1)

IMPLIES one_per_seat(Cancel_assn(flt,pas,sl))

Make_inv_one_per_seat : THEOREM one_per_seat(sl)

IMPLIES one_per_seat (Make_assn(flt ,pas ,pref, s I))

initial_one_per_seat : THEOREM one_per_seat(initial_state)

An additional property about the uninterpreted function Next_sea¢ must be added to the specifi-

cation in order to prove Make_inv_one_per_seat:

Next_seat_ax_2: AXIOM (FORALL a: member(a,sl(flt)) IMPLIES

seat(a) /ffiNext_seat(sl,flt,pref))

3.5 System Properties and Putative Theorems

Usually there are several types of system properties that are of interest to formalize and prove:

1. Properties about critical system operation derived from high level requirements

2. Putative theorems used to confirm our understanding of the specified system

An example of (2) is the property that if the system is in state sl, and we make a seat assignment

and then immediately cancel it, we should return to the same system state:

Make_Cancel : THEOREM NOT pass_on_flight(pas,flt,sl) =>

Cancel_assn(flt,pas ,Make_assn(flt ,pas,pref, sl) ) ffisl

The proof of this theorem involves several new concepts not encountered in the previous proofs.

The novice reader is encouraged to continue working at the terminal, while reading the following

proof. A key difference in this proof is the need to establish the equality of functions. This requires

the use of "extensionality" axioms provided by PVS. We issue the M-x pr command:

Make_Cancel :

I

{1} (FORALL (flt: flight), (pas: passenger),

(pref: preference), (s!: assn_state):

NOT pass_on_flight(pas, fl_, sl)

ffi>Cancel_assn(flt, pas, Make_assn(flt, pas, pref, sl)) - sl)
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As always we skolemize with SKOSIMP:

Rule? : (SKOSIMP)

For the top quan¢ifier in I, we introduce Skolem constants: (flt!l pas! I pref! 1 sl! 1)

this simplifies to:

Make_Cancel :

I
_1} NOT pass_on_flight(pas!l, flt!l, si!i)

=> Cancel.assn(flt!l, pas!l, Make_assn(flr!1, pas!l, pref!1, sl!1))

= s1!1

Applyin E disjunctive simplification to flatten sequent,

this simplifies to:

Make_Cancel :

I
{1}

{2}
pass_on_flight(pas!1, flt!1, 81!1)

Cancel_assn(flt!1, pas!l, Make_assn(flt!1, pas!1, pref!l, 81!i)) - sl!l

We expand Cancel_assn, pass_on_flight and Make_assn:

Rule?: (EXPAND "Cancel_assn")

Expanding the definition of Cancel_assn

this simplifies to:

Make_Cancel :

t

[1]
{2]-

pass_on_flight(pas!l, flt!1, sl!l)

Make.assn(flt!l, pas!_, pref!l, ei!1)

WITH [flt!l :=

{a: seat_assi_ent I

member(a, Make_assn(flt!1, pas!l, pref!l, sl!l)(flt!1))

AND pass(a) /= pas!l}]

= s1!1

Rule?: (EXPAND "pass_on_flight")

Expanding the definition of pass_on_flight

this simplifies to:

Make_Cancel :

I
{1}
[23

(EXISTS (a: seat_assig_ent): pass(a) - pas!l AND member(a, sl!l(flt!l)))

Make_assn(flt!l, pas!l, prefI1, si!I)

WITH [fl%!l :m _

{a: seat_assignment

member(a, Make_assn(flt!l, pas!l, pref!1, sl!l)(flt!l))
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\

AND pass(a) /= pas!l}]

= s1!1

Rule?: (EXPAND "Make_assn")

Expanding the definition of Nake_assn

this simplifies to:

Make_Cancel :

I

[1] (EXISTS (a: seat_assignment): pass(a) = pas!l AND member(a, sl!l(flt!l)))

{2} IF pref_filled(sl!1, flt!l, pref!l)

OR pass_on_flight(pas!l, flt!l, sl!1) THEN si!1

ELSE s1!1

WITH [flt!l :=

add((# seat := Next_seat(st!l, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))]

ENDIF

WITH [flt!l :=

{a: seat_assignment I

member(a,

IF pref_filled(sl!l, flt!1, pref!l)

OR pass_on_flight(pas!l, flt!1, si!1) THEN si!i

ELSE sl!l

WITH [flt!l :=

add((# seat := Nexg_seat(sl!1, flt!1, pref!l),

pass := pas!1

#), sl!l(fit!l))]

ENDIF(flt!I))

AND pass(a) /= pas!l}]

= s1!1

We issue an (AUTO-REWRITE-THEORY "sets[seat_assignment]") directiveto the prover:

Rule?:

Adding

Adding

Adding

Adding

Adding

Adding

Adding

Adding

Adding

Adding

Adding

Adding

Adding

Adding

(AUTO-REWRITE-THEORY "sets[seat_assignment]")

rewrites from theory sets[seat_assignment]

rewrite rule member

rewrite rule union

rewrite rule intersection

rewrite rule difference

rewrite rule add

rewrite rule remove

rewrite rule singleton

rewrite rule subset?

rewrite rule strict_subset?

rewrite rule empty?

rewrite rule emptyset

rewrite rule nonempty?

rewrite rule fullset
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Adding rewrite rule disjoint?

Adding rewrite rule extenslonality

Auto-rewritten theory sets[seat_assignment]

Rewriting relative to the theories:

sets [seat_assignment],

NIL,

NIL,

this simplifies to:

Make_Cancel :

[1] (EXISTS (a: Seat_asslgnment): pass(a) = pas!l AND member(a, s1!l(flt!l)))

[2] IF pref_filled(sl!1, flt!1, pref!l)

OR pass_on_flight(pas!1, flz!l, s1!I) THEN s1!1

ELSE sl!l

WITH [flZ!1 :=

add((# seat := Next_seat(s1!1, flZ!l, pref!1), pass := pas!l

#), sl!l(flt!l))]

ENDIF

WITH [flt!l :=

{a: seat_assi&rnment I

member(a,

IF pref_filled(sl!1, fi%!1, pref!l)

OR pass_on_flighZ(pas!1, flz!l, s1!1) THEN s1!1

ELSE si!1

WITH [flZ!l :=

add((# seat := Next_seat(s1!1, flz!l, pref!l),

pass := pas!l

#), sl!l(flt!l))]

ENDIF(flt!I))

AND pass(a) /= pas!l}]

= s1!1

Since the IF THEN ELSE is not at the highest levelinformula [2], we issue a LIFT-IF command:

Rule?: (LIFT-IF 2)

Lifting IF-conditions to the top level,

this simplifies to:

Make_Cancel :

I

[1"I

{2}
(EXISTS (a: seat_asslgnmenz): pass(a) - pas!1 AND member(a, sl!l(flt!1)))

IF pref_filled(sl!1, flZ!1, pref!1) OR pass_on_flighZ(pas!l, flZ!1, s1!1)
THEN s1!1

WITH [flZ!l :=

{a: seat_assignment I member(a, sl!l(flt!l)) AND pass(a) /= pas!1}]
= sl!l

ELSE
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sl_l

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!1

#), s1!1(fl¢!1))]

WITH [fl_!l :-

{a: seat_assignment I

member(a,

s1!1

WITH [flt!1 :=

add((# seat :- Next_seat(s1!!, flt!l, pref!1),

pass := pas!l

#), sl_l(fit_l))](fit_l))

AND pass(a) /= pas!l}]

= s1!1

ENDIF

Since the IF THEN ELSE is on the conclusions side of the sequent, it is equivalent to a conjunction.

Thus, we use a SPLIT command:

Rule?: (SPLIT 2)

Splitting conjunctions,

this yields 2 subgoals:

Make_Cancel.1 :

I
{I}

[2]

We remove the IMPLIES in formula {1} with a FLATTEN command:

Rule? : (FLATTEN)

Applying disjunctive simplification to flatten sequent,

this simplifies "co:

Make_Cancel. I :

{-1}

I
{1)

pref_filled(sl!l, fltI1, pref!l) OR pass_on_flight(pas!l, flt!l, s1!1)

IMPLIES s1!1

WITH [flt!l :=

{a: seat_assignment I member(a, s1!l(flt!l)) AND pass(a) /= pas!l}]

= si!1

(EXISTS (a: seat_asslgnment): pass(a) - pas!l AND member(a, sl!l(flt!l)))

[2]

pref_filled(s1!l, flt!l, pref!1) OR pass_on_fllght(pas!l, flt!l, s1!1)

s1!1

WITH [flt!l :-

{a: seat_assignment I member(a, sl!l(flt!l)) AND pass(a) I= pas!1}]

= sl!l

(EXISTS (a: seat_asslgnment): pass(a) - pas!l AND member(a, sl!1(flt!l)))

We notice that formula {I} statesthat two functions are equal13. In PVS one proves the equality of

functions using extensionality axioms. These are axioms of the form / = # IFF Vz :/(x) = #(x).

13sl ! 1 is a function[_lisht -> flight_asst_uaents].
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Thus, to prove f = g, itis sufficient to prove that f(x) = g(x) for M1 values of x. In order to bring

the appropriate axiominto the sequent, one uses the APPLY-EXTENSIONALITY command:

Rule?: (APPLY-EXTENSIONALITY 1)

Rewriting member(a, sl!l(flt!l)) %o sl!l(fl%!l)(a).

Rewri%ing member(x,

sl!l

WITH [flt!l :=

{a: seat_assignment [ sl!l(flt!i)(a) AND pass(a) /= pas!l}3(x!l))
to s1!1

WITH [flt!1 :=

{a: seat_assigTunent ] sl!l(flt!l)(a) AND pass(a) /= pas!l}](x!l)(x).

Rewriting member(x, sl!l(x!l)) to sl!l(x!l)(x).

Rewriting member(a, sl!l(flt!l)) to sl!l(flt!l)(a).

Rewriting member(a, sl!l(flt!l)) to s1!l(flt!1)(a).

Rewriting member(x,

s1!1

WITH [flt!l :=

{a: seat_assigmnent ]

to s1!1

WITH [flt!1 :=

{a: seat_assi&rnment [ sl!l(flt!l)(a) AND pass(a)

Rewriting member(x, sl!l(x!1)) %o sl!l(x!l)(x).

Applying extensionality,

this simplifies %o:

Make_Cancel.1 :

sl!l(flt!l)(a) AND pass(a) /= pas!l}3(x!l))

/= pas! 1]-3 (x! 1) (x).

[-I]

I

{i}

{2)

pref_filled(sl!1, flt!l, pref!1) OR pass_on_flight(pas!l, flt!l, sl!l)

slIl

WITH

{a:

= sl!l(x!l)

sl!l

WITH [flt!l :=

{a: seat_assignment

= sl!l

[flt!l :=

seat_assignment I sl!l(flt!l)(a) AND pass(a) l = pas!l}](x!l)

I sl!l(flt!l)(a) AND pass(a) I = pas!l}]

{3} (EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!l)(a))

Notice that this command has added the formula {1} to the sequent. Usually it is easier to prove

formulas Uke {1} than formulas fike [2]. We wiU not be needing formula [2] any more, so we hide

it to keep the clutter down. This is accomp_shed by the HIDE command:

Rule?: (HIDE 2)

Hiding formulas: 2,

this simplifies to:

Make.Cancel.1 :

[-I] pref_filled(sl!l, flt!l, pref!l) OR pass_on_flight(pas!l, flt!l, sl!l)
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I

[13 s1!1

WITH [fi%!1 :=

{a: seat_assignment I sl!l(flt!l)(a) AND pass(a) /- pas!l}] (z!l)

m sl! 1(x!1)

[23 (EXISTS (a: seat_assignment): pass(a) = pas!1 AND s1!l(flt!l)(a))

The equality in formula [1] is trivial except for sl!l(flt!l), so we case split on flt!l = x! 1:

Rule?: (CASE "flt!l = x!1")

Case splitting on

fi%!i = x!l,

this yields 2 subgoals:

Make_Cancel. I.1 :

_-1}

[-2]
I

[13

[2]

flt!1 - x!l

pref_filled(sl!l, fi%!1, pref!l) OR pass_on_flight(pas!l, fi%!1, sl!l)

sl!l

WITH [flt!l :=

{a: seat_assignment I sl!l(flt!l)(a) AND pass(a) /= pas!l}](x!l)

- sl!l(x!l)

(EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!1)(a))

We simpUfywith ASSERT:

Rule?: (ASSERT)

Rewriting member(x, {a: seat_assignment l sl!l(flt!l)(a) AND pass(a) /= pas!l})

to sl!1(flt!l)(x) AND pass(x) /= pas!l.

Rewriting member(x, sl!l(x!l)) to sl!l(x!l)(x).

Invoking decision procedures,

this simplifies to:

Make_Cancel.l.1 :

[-1]

[-2]

I
{1}
[2]

flt!l - x!l

pref_filled(sl!l, flt!l, pref!1) OR pass_on_flight(pas!l, flt!l, s1!1)

({a: seat_assignment I sl!l(flt!l)(a) AND pass(a) /= pas!l}) = sl!l(x!1)

(EXIST S (a: seat_assig_men%): pass(a) : pas!l AND sl!l(flt!l)(a))

We remember that sets in PVS are just functions into bool, so formula {I} involves the equality

of two functions. As before we invoke the APPLY-EXTENSIONALITY command to introduce the

appropriate axiom into the sequent:

Rule?: (APPLY-EXTENSIONALITY 1)

Rewriting member(x, {a: seat_assignment I sl!l(flt!l)(a) AND pass(a) /= pas!l})

to sl!l(flt!1)(x) AND pass(x) /= pas!1.

Rewriting member(x, s1!1(x!1)) to sl!l(x!l)(x).

Rewriting member(x, {a: seat_assiEnment I sl!l(flt!1)(a) AND pass(a) /- pas!l})
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to sl!1(flt!1)(x) AND pass(x) I= pas!l.

Rewriting member(x, s1!l(x!l)) to sl!l(x!1)(x).

Applying exZensionalizy,

this simplifies to:

Make_Cancel.1.1 :

[-I]

[-2]
I

{i}

[2]
[3]

flZ!l = x!l

pref_fiiled(sl!l, flt!l, pref!l) OR pass_on_flight(pas!l, fit!l, sl!l)

(sl!l(flZ!1)(x!2) AND pass(x!2) /= pas!l) = s1!l(x!1)(x!2)

({a: seat_assigmment I s1!l(f!t!l)(a) AND pass(a) /= pas!l}) = sl!l(x!l)

(EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!l)(a))

We won't need _rmula[2],so we hideit.

Rule?: (HIDE 2)

Hiding formulas: 2,

this simplifies to:

Make_Cancel.l.1 :

C-l]
[-2]
I

[1]
[2]

flt!1 = x!l

pref_filled(sl!l, flZ!l, pref!l) OR pass_on_flight(pas!l, flZ!l, sl!l)

(sl!l(flt!l)(x!2) AND pass(x!2) /= pas!l) = sl!l(x!l)(x!2)

(EXISTS (a: seaLassignmenZ): pass(a) = pas!l AND sl!l(flZ!l)(a))

We notlce that sl!l(x!l) appears in _rmula [1], while sl!l[flz!l] appears in _rmula [2].

Formula [-1] tens us that flz!l = x! 1, so we replace _rmulas [1] and [2] with [-1]:

Rule?: (REPLACE -1 * RL)

Replacing using formula -i,

this simplifies to:

Make_Cancel.l.1 :

[-1]
1"-2]

I
{1}
[2]

flt!l = x!l

pref_filled(sl!l, flt!l, pref!l) OR pass_on_flighZ(pas!l, flt!l, sl!l)

(sl!l(flt!l)(x!2) AND pass(x!2) /= pas!l) - sl!l(flZ!l)(x!2)

(EXISTS (a: seaLassignmenZ): pass(a) = pas!l AND sl!l(flt!l)(a))

To match _rmula [2] with _rmula [1], we instantiate _rmula [2]'s emstentiM quantifier with x!2:

Rule?: (INST 2 "x!2")

InstantiaZing the top quantifier in 2 with the terms:

x!2

this simplifies to:

Make_Cancel.l.1 :

[-I]
[-2]

flZ!l = x!l

pref_filled(s1!l, flZ!l, pref!l) OR pass_on_flight(pas!l, flt!l, sl!l)
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I

[1]

{2}

(sl!l(flt!l)(x!2) AND pass(x!2) l: pas!l) : s1!l(flt!l)(z!2)

pass(x!2) = pas!l AND sl!l(flt!l)(x!2)

We now finish off this sequent with GROUND:

Rule?: (GROUND)

Applying propositional simplification and decision procedures,

This completes the proof of Make_Cancel.l.l.

Make_Cancel. 1.2 :

[-1]
I

{1}

[2]

r3]

pref_filled(sl!l, flt!l, pref!l) OR pass_on_flight(pas!l, flt!l, sl!l)

fl%!l = x!l

sl!l

WITH [flt!l :=

{a: seat_assignment I sl!1(flt!l)(a) AND pass(a) /= pas!l}J(x!1)

- s1!1(x!1)

(EXISTS (a: seat_assiEnment): pass(a) = pas!l AND s1!l(flt!l)(a))

The prover now turns our attention to Make_Cancel.l.2. Weissue an ASSERT:

Rule?: (ASSERT)

Invoking decision procedures,

This completes the proof of MakelCancel.l.2.

This completes the proof of Make_Cancel.l.

Make_Cancel.2 :

I
{1} NOT

(pref_filled(sl!l, flt!l, pref!l)

OR pass_on_flight(pas!1, flt!l, s1!1))

IMPLIES

sl!l

WITH [flt!l :-

add((# seat := Next.seat(sl!l, flt!1, pref!l), pass :" pas!1

#), sl!lCfit!l))]

WITH [flt!l :l

{a: seat_assignment I
member(a,

sl!l

WITH [fl%!l :-

add((# seat :- Next_seat(sl!l, flt!l, pref!l),
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C2]

That finishes off Make_Cancel. 1.2 and consequently Make_Cancel. 1.
Make_Cancel.2. We issue a GROUND command:

pass := pas!l

#), sl!l(flt!l))](flt!l))

AND pass(a) /= pas!l}]

= s1!1

(EXISTS (at seat_assignment): pass(a) = pas!l AND member(a, sl!l(flt!l)))

We are now working on

Rule?: (GROUND)

Rewriting member(a, sl!l(flt!l)) to sl!l(flt!l)(a).

Rewriting add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l #),

sl!l(flt!l))(a) to (# seat := Next_seat(sl!l, fltI1, pref!l), pass := pas!l #)

= a OR sl!1(flt!l)(a).

Rewritin E member(a,

add((# seat := Nex__seat(s1!l, flt!l, pref!l), pass := pas!l #),

sl!1(flt!l))) to (# seat := Next_seat(st!l, flt!1, pref!l), pass := pas!1 #)

= a OR sl!l(flt!l)(a).

Rewriting member(a, sl!l(flt!l)) to sl!l(flt!l)(a).

Applying propositional simplification and decision procedures,

this simplifies to:

Make_Cancel.2 :

I

{i} pref_filled(sl!l, Sit!l, pref!l)

{2} pass_on_flight(pas!l, flt!l, sl!l)

{3} s1!1

WITH [flt!l :-

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!1

#), el!!(fit!l))]

WITH [flt!l :=

{at seat_assignment I

((# seat := Next_seat(sl!l, flt!l, pref!1), pass := pas!l #) = a

OR sl)1(flt!1)(a))

AND pass(a) /= pas!l}]

= sl!l

{4} (EXISTS (at seat_assiEnment): pass(a) = pas!l AND sl!l(flt!l)(a))

Since formula {3}involves the equality oftwofunctions, weissue an APPLY-EXTENSIONALITY com-
mand:

Rule?: (APPLY-EXTENSIONALITY 3)

Rewriting member(x,

sl!1

WITH [flt!l :=

add((# seat := Next_seat(slit, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))]

WITH [flt!l :=

{a: seat_assignment I
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((# seat := Next_seat(st!l, flt!l, pref!l), pass :- pas!1 #) • a

OK sl!l(flt!1)(a))

AND pass(a) /= pas!l}](x!1)) to si!1

WITH [flt!1 :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), sl!l(flt!l))]

WITH [flt!l :=

{a: seat_assi&q_ment [

((# seat := Next_seat(sl!l, flt!l, pref!l), pass :- pas!l #) - a

0R s1!l(flt!l)(a))

AND pass(a) /= pas!l}](x!1)(x).

Rewriting member(x, s1!l(x!1)) to s1!l(x!l)(x).

Rewriting member(x,

s1!1

WITH [flt!l :=

add((# seat := Next_seat(st!l, flt!l, pref[1), pass := pas!l

#), sl!l(flt!l))]

WITH [flt!l :=

{a: seat_assigrunent I

((# seat := Next_seat(s1!1, flt!l, pref!l), pass := pas!l #) - a

DR s1!l(flt!l)(a))

AND pass(a) /= pas!l}](x!l)) to sl!l

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!1, pref!l), pass := pas!l

#), sl!l(flt!1))]

WITH [flt!l :=

{a: seat_asslgrunent I

((# seat := Next_seat(st!l, flt!l, pref!l), pass :- pas!1 #) - a

DR sl!l(flt!l)(a))

AND pass(a) /= pas!l}](x!l)(x).

Re.tiring member(x, sl!l(x!l)) to sl!l(x!l)(x).

Applying extensionality,

this simplifies to:

Make_Cancel. 2 :

I

{i}

[2]

sl!l

WITH [flt!l :=

add((# seat := Next_seat(s1!1, flt!l, pref!l), pass :m pas!l

#), si!l(fit!l))]

WITH [flt!l :=

{a: seat_assignment I

((# seat := Next_seat(sl!1, flt!l, pref!l), pass :• pas!l #) • a

OR sl!l(flt!1)(a))

AND pass(a) /= pas!l}](x!l)

- s1!1(x!1)

pref_filled(sl!l, flt!1, pref!l)
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[3] passlon_flight(pas!l, fit!l, s1!1)

[4] sI !I

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), si! l(flt!l))]

WITH [flt!1 :=

{a: seat_assigrunent l

((# seat := Next_seat(sl!l, flt!l, pref!1), pass := pas!l #) = a

OR sl) l(flt! 1)(a))

AND pass(a) /= pas !1}]

- s1!1

[5] (EXISTS (a: seat_assignment): pass(a) = pas!1 AND s1!l(flt!l)(a))

We hide formula [4]:

Rule?: (HIDE 4)

Hiding formulas: 4,

this simplifies to:

Make_Cancel. 2 :

I ...... .

[i] sl!1

WITH [fltI1 :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l

#), sl!l(fit!l))]

WITH [fit!l :=

{a: seat_assignment [

((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l #) = a

OR sl!l(flt!l)(a))

AND pass(a) /= pas!l}](x!l)

= s1!1(x!1)

[2] pref_filled(sl!l, flt!l, pref!l)

[3] pass_on_flight(pas!l, flr!1, si!I)

[4] (EXISTS (a: seat_assignment): pass(a) = pas!1 AND s1!1(flt!1)(a))

Once ag_n the function equality is trivialexceptfor flt!l = x!l, so we case spUt:

Rule?: (CASE "flt!l = x!l")

Case splitting on

flt!l = x!l,

this yields 2 subgoals:

Make_Cancel.2.1 :

{-1}

I

[1]

flt!l = x!l

sl!l

WITH [flt!l :-

add((# seat := Next_seat(sl!l, fit!l, pref!l), pass := pas!1

#), sl!l(flt!l))]
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[2]
[3]

[4]

WITH [flt!l :=

{a: seat_assignment I

((# seat := Next_seat(st!l, flt!l, pref!l), pass :- pas!1 #)

OR sl!l(flt!l)(a))

AND pass(a) /= pas!l}](x!l)

- sl!l(x!l)

pref_filledCsl!l, flt!l, pref!l)

pass_on_flight(pas!l, flt!l, s1!1)

(EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!1)(a))

= a

We simplify with ASSERT:

Rule?: (ASSERT)

Rewriting member(x,

{a: seat_assignment I

((# seat := Next_seat(sl!l, flt!l, pref!l), pass := pas!l #) - a

OR sl!l(flt!l)(a))

AND pass(a) /= pas!l}) to ((# seat := Next_seat(s1!1, flt!l, pref!l),

pass := pas!1 #) = x

OR sl)l(flt!l)Cx)) AND pass(x) /= pas!1.

Rewriting member(x, s1!l(x!1)) to sl!l(x!l)(x).

Invoking decision procedures,

this simplifies to:

Make_Cancel.2.1 :

[-13

I
{1}

[2]
[3]

[4]

flt!l = x!l

({a: seat_assignment I

((# seat := Next_seat(s1!1, flt!l, pref!l), pass :- pas!1 #) = a

OR sl!l(flZ!l)(a))

AND pass(a) I= pas!l})

= sl!l(x!l)

pref_filled(sl!l, flt!l, pref!l)

pass_on_flight(pas!l, fltI1, s1!i)

(EXISTS Ca: seat_assignment): pass(a) = pas!1 AND sl!l(fltIl)(a))

Once again we have a formula that involves the equality of two functions, one of which is a set.

Thus, we issue an APPLY-EXTENSIONALITY command followed by the usual HIDE command:

Rule?: (APPLY-EXTENSIDNALITY I)

Rewriting member(x,

{a: seat_assignment I

((# seat := Next_seat(s1!1, flt!1, pref!l), pass := pas!l #) m a

OR sl!l(flt!l)(a)) AND pass(a) /- pas!l})

to ((# seat := Next_seat(s1!1, flt!1, pref!l), pass :- pas!l #) - x

OR s1!1(flt!l)(x)) AND pass(x) /= pas!1.

Rewriting member(x, s1!l(x!l)) to sl!l(x!l)(x).

Rewriting member(x,

{a: seat_assignment I
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((# seat := Next_seat(st!l, flt!1, pref!1), pass := pas!1 #) = a

OR sl!l(flt!l)(a)) AND pass(a) /= pas!l})

to ((# seat := Next]seat(st!l, flt!1, pref!l), pass := pas!l #) = x

OR s1!l(flt!l)(x)) AND pass(x) /= pas!1.

Rewriting member(x, sl!l(x!l)) to s1!l(x!i)(x).

Applying extensionality,

this simplifies to:

Make_Cancel.2.1 :

[-1]

I
{1}

[2]

[3]
[41
[s]

flt!l = x!l

(((# seat := Next_seat(s1!1, flt!l, pref!1), pass

OR sl!i(flt!l)(x!2))

AND pass(x!2) 1= pas!l)

• s1!1(x!l)(x!2)

({a: seat_assignment I

((# seat := Next_seat(s1!1, flt!l, pref!I), pass
0R sl!l(flt!l)(a))

AND pass(a) /= pas!1})

= sl!l(x!l)

pref_filled(s1!1, fit!l, pref!l)

pass_on_flight(pas!1, flt!l, s1!1)

(EXISTS (a: seat_assignment): pass(a) = pas!l AND sl!l(flt!l)(a))

:= pas!l #) = x!2

:= pas!1 #) = a

Rule?: (HIDE 2)

Hiding formulas: 2,

this simplifies to:

Make_Cancel.2.1 :

[-13

I

[1]

As in

flt!l = x!l

[2]

[3]
[4]

past cases we take advantage of formula [1] using the REPLACE command 14.

Rule?: (REPLACE -i * RL)

Replacing using formula -1,

this simplifies to:

Make_Cancel.2.1 :

(((# seat := Next_seat(st!l, flt!l, pref!l), pass := pas!l #) = x!2

OR sl!l(flt!1)(x!2))

AND pass(x!2) /= pas!l)

= sl!l(x!l)(x!2)

prsf_filled(sl!l, f!_!l, pref!l)

pass_on_flight(pas!1, flt!l, s1!1)

(EXISTS (a: seat_assignment): pass(a) = pas!1 AND sl!1(flt!1)(a))

*4ThePVS decisionproceduresarepowerfulenough toprovethissequentand the previousone evenifthe REPLACE

commands areomitted.Nevertheless,oftenthe discoveryofa proofiseasierwhen the REPLACEcommand isusedin
situationssuch asthese.
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[-1]
I

{1}

[2]
[3]

[4]

flt!l - x!l

(((# seat := Next_seat(st!l, flt!l, pref!l), pass := pas!1 #) = x!2

OR sl!l(flt!l)(x!2))

AND pass(x!2) /= pas!l)

- sl!l(flt!l)(x!2)

pref_filled(sl!l, flt!l, pref!l)

pass_on_flight(pas!1, fi¢!1, sl!l)

(EXISTS (a: seat_assiEnment): pass(a) = pas!1 AND sl!l(flt!l)(a))

To match the sl!l(flt!l)(x!2) in formula [1]with the sl!l(flt!l)(a) in formula [4],we in-

stantiate formula [4]:

Rule?: (INST 4 "x!2")

Instantiating the top quantifier in 4 with the terms:

x_2

this simplifies "co:

Make_Cancel.2. I :

[-1]
I

[1]

[2]
[3]

{4}

flt!l = x!l

(((# seat := Next_seat(s1!1, flt!l, pref!l), pass :- pas!l #1 " x!2

OR s1!l(flt!1)(x!2))

AND pass(x!2) /= pas!l)

- sl!l(flt!l)(x!2)

pref_filled(sl!1, flt!l, pref!l)

pass_on_flight(pas!l, flt!1, s1!1)

pass(x!2) = pas!l AND sl!l(flt!l)(x!2)

We have now reached the point where one must know that PVS's derision procedures are not

complete for equality over the booleans. Thus, itisnecessary to convert the ,,in formula [i]to an

IFF. Thls isdone using the IFF command:

Rule?: (IFF 1)

Converting top level boolean equality into IFF form,

Converting equality to IFF,

this simplifies to:

Make_Cancel.2.1 :

[-1]

I
{1)

[2]
[3]
[4]

flt!1 " x]l

((# seat :- Next_seat(si!i, flt!1, pref!l), pass :- pas!1 #) - x!2

OR s1!l(flt!i)(x!2))

AND pass(x!2) /= pas!l

IFF sl!l(flt!i)(x!2)

pref_filled(s1!l, flt!1, prsf!1)

pass_on_flight(pas!l, flt!l, si!I)

pass(x!2) _ pas!1 AND sl!l(flt!l)(x!2)
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Now the decision procedures can finish off this sequent:

Rule?: (GROUND)

Applying propositional simplification and decision procedures,

_"nis completes the proof of Make_Cancel.2.1.

Make_Cancel.2.2 :

I

{i}
[2]

[3]
[43

[5]

flt)l = x!l

sl!l

WITH [flt!l :=

add((# seat := Next_seat(sl!l, flt!l, pref!l), pass

#), sl!l(flt!l))]

WITH [flt!l :=

{a: seat_assigmnent I

((# seat := Next_seat(sl!l, flt!l, pref!l), pass

OR sl!l(flt!l)(a))

AND pass(a) /= pas!l}](x!l)

= sl!l(x!l)

pref_filled(sl!l, flt!l, pref!l)

pass_on_flight(pas!l, flt!l, sl!l)

(EXISTS (a: seat_assignment): pass(a)

:= pas!l

:= pas!l #) = a

= pas!l AND sl!l(flt!l)(a))

This completes Make_Cancel.2.1 and we are directed to work on Make_Cancel.2.2. An ASSERT

finishes off this branch and the whole proof:

Rule? (ASSERT)

Invoking decision procedures,

2"nls completes the proof of Make_Cancel.2.2.

Sis completes the proof of Make_Cancel.2.

Q.E.D.

Run time = 49.55 secs.

Real time = 61.22 secs.

M-x edit-pr displays the following complete proof:

IIII (SKOLEM i

("flt!l" "pas!l" "pref)l" "sl!l"))

(FLATTEN)

(EXPAND "Cancel_assn")
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(EXPAND"pass_on_flight")
(EXPAND"Make_assn")
(AUTO-REWRITE-THEORY"sets [sea%_assi&n_ment] ")

(LIFT-IF 2)

(SPLIT 2)

(("I" (FLATTEN)

(APPLY-EXTENSIONALITY 1)

(HIDE 2)

(CASE "flt!l = x!l")

(("I" (ASSERT)
(APPLY-EXTENSIONALITY I)

(HIDE 2)

(REPLACE -I * RL)

(INST 2 "x!2")

(GROUND))

(.2" (ASSERT))))

("2" (GROUND)

(APPLY-EXTENSI ONALITY 3)

(HIDE 4)

(CASE "flt!l - x!l")

(("1" (ASSERT)

(APPLY-EXTENSIONALITY I)

(HIDE 2)

(REPLACE -I * RL)

(INST 4 "x!2")

(IFF 1)

(GROUND))

("2" (ASSERT))))))

We issue a M-x prt on the theory. All of the proofs are successful--the system reports:

Proof summary for theory ops

Cancel_assn_inv ......................................... proved- complete

MAe .................................................... proved- complete

MAu .................................................... proved- complete

Make_assn_inv .......................................... proved - complete

Make_Cancel ............................................ proved - complete

initial_state_inv ...................................... proved - complete

Theory totals: 6 formulas, 6 attempted, 6 succeeded.

The following putative theorems are left as exercises for the reader:

Make_putatlve: THEOREM NOT pref_filled(sl, flt, pref) ->

(EXISTS (x: sea%_assiEnment) :

member(x, Make_assn(flt, pas, pref, sl)(flt)) AND pass(x) -pas)

Cancel_puCative: THEOREM

NOT (EXISTS (a: seat_assigmaen_):

member(a,Cancel_assn(flt,pas,sl)(flt)) AND pass(a) - pas)
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The ambitious reader should add the following definition to the ops theory:

Lookup: function[flight, passenger, assn_state -> [row,position]] =

(LAMBDA flt, pas, sl:

seat(epsilon( {a I member(a,s1(flt)) AND pass(a) = pas})))

and prove

Lookup_putative: THEOREM NOT (pref_filled(sl, flt, pref) OR

pass_on_flight(pas,flt,sl)) =>

meets_pref(alrcraft(flr),

Lookup(flt, pas, Make_assn(flt,pas,pref,sl)),

pref)

4 Summary

A specification of an airline reservation system was formally specified using PVS. A state-machine

approach was used to model this system. Two operations were defined and shown to maintain

the state invariant. These proofs were accomplished using the PVS prover and discussed in detail.

The technique of validating a specification via "putative theorem proving" was also discussed and
illustrated in detail.

References

[1] Rushby, John: Formal Methods and Digital Systems Validation for Airborne Systems. NASA
Contractor Report 4551, 1993.

[2] Shankar, Natarajan; Owre, Sam; and Rushby, John: PVS Tutorial Computer Science Labo-

ratory, SRI International, Menlo Park, CA, Feb. 1993. Also appears in Tutorial Notes, Formal

Methods Europe '93: Industrial-Strength Formal Methods, pages 357-406, Odense, Denmark,

April 1993.

[3] Shankar, N.; Owre, S.; and Rushby, J. M.: The PVSProofChecker: A Reference Manual (Beta

Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

[4] Owre, S.; Shankar, N.; and Rushby, J. M.: The PVS Specification Language (Beta Release).
Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

[5] Owre, S.; Shankar, N.; and Rushby, J. M.: User Guide for the PVS Specification and Verification

System (Beta Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb.
1993.

[6] Johnson, Sally C.; Holloway, C. Michael; and Butler, Pdcky W.: Second NASA Formal Methods

Workshop 1992. NASA Conference Publication 10110, Nov. 1992.

68





Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Publicre_ootting b_ckm for lhll oO41_cticm of information is estimated Io average 1 hour per rel_oonlvl, including the t_'ne fo_ fly.wing instruCtS>hE, sewch_ exlstc¢_l _ s_roN,

_ftg and m_ntaJrl_t_ the = needed, and ¢oml_in 9 _ rev_ the collection of intormat_on. Send commerd$ r_arding this borden I_tlrn_i or any other B d this

ookdimt o4 ir_onnadio_ includi_ suggNtion= for roduc-,ng thit burden, to Wa_hlnglon Headquader= Servioe=, Diteclorate lot I_om'_.t_n O_eralion= and Repo_ls. 1215 JeflerK_ Davis

H_my, Suite 1204, Arlinglon, VA 2_-4302. _ to the O_ice Of Management and Budget _ P_oerwo_k Reduction Proje_ (0704-01U), Wm_hin_on, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1993 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Elementary Tutorial on Formal Specification and Verification Using PVS WU 505-64-10-13

6. AUTHOR(S)

Ricky W. Butler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

NASA TM-108991

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION 1AVAILABILITY STATEMENT

Unclassified - Unlimited

12b. DISTRIBUTION CODE

Subject Category 62

13. ABSTRACT (Maximum 200 words)

This paper presents a tutorial on the development of a formal specification and its verification using the Prototype

Verification System (PVS). The tutorial presents the formal specification and verification techniques by way of specific

example--an airline reservation system. The airline reservation system is modeled as a simple state machine with two basic

operations. These operations are shown to preserve a state invariant using the theorem proving capabilities of PVS. The

technique of validating a specification via "putative theorem proving" is also discussed and illustrated in detail. This paper is

intended for the novice and assumes only some of tl_e basic concepts of logic. A complete description of user inputs and

the PVS output is provided and thus it can be effectively used while one is sitting at a computer terminal.

14. SUBJECT'TERMS Formal methods; Formal specification; Verification and validation; Theorem

provers; Mechanical verification

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

15. NUMBER OF PAGES

70

Unclassified Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

16. PRICE CODE

A04
' 20. UMITATION OF ABSTRACT

Slandsrd Form 298 (Rev-2-89)NSN 7540-01 _ 2_0155_
Prlff.cr_ed by ANSI Std. Z.3_ 18
298-I_


